Adabas
Utilities Manual, Volume 1

)
1)
0
g
5
p))
m
D
)

Manual Order Number: ADA741-0801 BB

This document applies to Adabas Version 7.4 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

Readers comments are welcomed. Comments may be addressed to the Documentation Department at the
address on the back cover or to the following e-mail address:

Documentation@softwareag.com
© December 2002, Software AG

All rights reserved
Printed in the Federal Republic of Germany

Software AG and/or dl Software AG products are either trademarks or registered trademarks of Software AG.
Other products and company names mentioned herein may be the trademarks of their respective owners.

TABLE OF CONTENTS

GENERAL INFORMATION ... e e 1

About ThisManual e e e 1

Utility Control Statementst e e 2
Control StatemeNnt SYNtaXottt e 2
Control Statement RUIES e 6
Parameter ValUeS o e 6

1. ADAACK : CHECK ADDRESSCONVERTER 11

Functional OVENVIEWo e e 11

ACCHECK :

Check Address Converter Against DataStorage oo i it 12
Optional Parametersottt e 12
EXAMPIES .o e 13

JCL/IJCSRequirementsand Examples. ..., 14
BS2000 . .\ttt e 14
ZIOSOF OS/390 . ..ottt e 16
ZIVM OF VM ESA ottt e e e 17
VB ESA .ttt 18

2. ADACDC : CHANGED-DATACAPTURE 19

Functional OVENVIEWo e e 19
Phases of Operationand Resulting Files i 19
Primary INPUE Data oot 22
Primary OULPUL Datao ottt e e et e e 22
TransaCtion File o e 23

Runningthe Utility e 25
Optional Parametersot t 25

Operating System Considerationsiiiiiiiii . 27
ZIOSOF OS/390 ..ttt e 27
VB ESA .ttt 28

Adabas Utilities Manual, Volume 1

3.

BS2000 ..t 28
The ADACDC USEr EXit . ..ot e e e et 29
Installing the EXit oo e e 29
User EXit Interfaceo 29
User EXit Calls ..o 31
EXamplES .. e 33
JCL/ICSRequirementsand Examples. ..., 34
BS2000 . .t 34
ZIOS OF OS 390 ...ttt e 36
ZIVM O VM ESA o e 38
VO E S A L 40
ADACMP : COMPRESS-DECOMPRESS 43
Functional OvervVIiew i e e 43
Overview of the COMPRESS FUNCLION oot e e e 43
Overview of the DECOMPRESS FUNCEION vt ittt e 44
Input Data Requirements et e 45
INPUL Data SITUCIUNEot e e e e e e 45
Multiple-Value Field Count i 45
Periodic Group CoUNtot e 47
Variable-Length Fidld Size. ... e e e e 50
PrOCESSING . oottt 52
Data Verification i 52
Data CoMPIESSION . . ottt ettt e e e 52
COMPRESS FuUNction OULPpULo e e e 54
Compressed DataReCOrdSot e 54
Reected Data RECOISottt e e 54
ADACMP REPOIT . .. e e 55
DECOMPRESS Function QUtputt 57
Reected Data RECOISottt e 58
Restart ConSiderationst e e 59
USEr EXIt B ... 59

Table of Contents

COMPRESS: Createan AdabasFile 60
Optional Parameters and Subparametersttt e e e 61
Essential Data Definition SyntaXt e e e 66
Optiona Field Definition Statements i i e e 83
ADACMP COMPRESS EXamplesttt e et e 101

DECOMPRESS : DecompressFle(s) 103
Optional Parameters and Subparameterst e e 103
Decompressing Multiclient Files i e 107
ADACMP DECOMPRESS EXamples oo i ittt e 108

JCL/IJCSRequirementsand Examples., 108
User EXitSWith ADACMP . ..o e e e e e e 108
BS2000 ..t e 110
OS/390 0r Z/OS ..o 113
VIM/ESA O Z/NV M o 116
VO E S A . e e 117

ADACNYV : DATABASE CONVERSION 121

Functional OVervVIiew e e 121
Datahase StalUSottt e 121
PrOCEUUNE . . o 122

CONVERT : Convert Databaseto Higher Version 123
Optional Parametersot 123
Conversion ConsiderationSottt e 124
EXAMPIE .. 125

REVERT : Revert Databaseto Lower Version 126
Essential Parameter and Subparameter ... i i e 126
Optional Parameter . ..o 126
Reversion ConsSiderationSottt 127
EXAMPIE .. 128

JCL/IJCSRequirementsand Examples., 129
BS2000 . ..t 129
OS/390 0r Z/OS ..o 132
VIM/ESA O ZIMV o 133
VO E S A L e 134

Adabas Utilities Manual, Volume 1

5 ADADBS: DATABASE SERVICES 137
Functional OvVerview e e 137
Syntax Checking with the TEST Parameterc i, 138
ADD i Add Datasatoo it 139
Associator or Data Storage Dataseto oot 139
Essential Parameter and Subparameter 140
Optional Parameterso 140
EXAMPIES . 140
ALLOCATE : Allocate FileExtent, 141
Essential Parameters. .. .o 141
Optional Parametersot 141
EXAMPIE .. 142
CHANGE : Change Standard Lengthof aField 143
Essential Parameters. .. .o 143
Optional Parametersot 144
EXAMPIE .. 145
CVOLSER : Print Adabas Extentson GivenVolume 145
Essential Parameter 145
Optional Parameterso 145
EXAMPIE .. e 146
DEALLOCATE : Dedlocate FileExtentcccoiiiiinnnn.. 146
Essential Parameters.ot 146
Optional Parametersot 147
EXAMPIE .. e 147
DECREASE : Decrease Associator/Datastorageooovvviieeennnn. 148
Essential Parameter 148
Optional Parametersot 148
EXAMPIE .. 149
PrOCEUNE . . o 149
DELCP: Delete Checkpoint Records, 149
Essential Parameter 149
Optional Parameterso 150
EXAMPIE . 150

Table of Contents

DELETE :DeeteFile e 151
Essential Parameter 151
Optional Parameterso 151
EXAMPIES .o 152

DSREUSE : Reuse DataStorageBlockso i, 153
Essential ParameterSo 153
Optional Parameters . .. oot 154
EXAMPIE .. e 154

ENCODEF : ChangeFileEncoding 155
Essential Parameter 155
Optional Parameterst 155
EXAMPIE ..o 156

INCREASE : Increase Associator/DataStoragecovvenun... 156
Essential Parameter 157
Optional Parameters . .. oot 157
EXAMPIE .. 157
General ProCeaUre i 157
Operating-System-Specific Procedures 158

ISNREUSE i ReUSEISNS e e 164
Essential ParameterSo 164
Optional Parametersot 164
EXAMPIE ..o 165

MODFCB : Modify FileParameters 165
Essential Parameter 166
Optional Parameterso 166
EXAMPIE .. 167

NEWFIELD : AddNew Field i 168
Essential Parameter 168
Optional Parameterso 169
EXAMPIE .. 170

ONLINVERT : Start Onlinelnvert i, 171
Essential Parameterso 171
Optional Parametersot 172
EXAMPIE .. 173

Adabas Utilities Manual, Volume 1

\

ONLREORFASSO :

Start Online Reorder Associator forFiles 173
Essential Parameters.o e 174
Optional Parameterso 174
EXAMPIE .. 175

ONLREORFDATA : Start Online Reorder Datafor Files 175
Essential Parameters. .. .o 176
Optional Parametersot 176
EXAMPIE .. 177

ONLREORFILE :

Start Online Reorder Associator and Datafor Files 178
Essential ParameterS. . ..o 178
Optional Parametersot 179
EXAMPIE .. 180

OPERCOM : Adabas Operator Commands., 181
Using OPERCOM Commands in Cluster Environmentscccoveun... 181
Optional Parametersot 182
Operator ComMMAaNGSt i ettt e et e e 183

PRIORITY : ChangeUser Prioritycouiiiiinannn. 198
Essential Parameter 198
Optional Parametersot 198
EXAMPIE .. 199

RECOVER : RECOVEr SPACE . . oottt et e et 199
Optional Parametersot 199

REFRESH : Set FiletoEmpty Status 200
Essential Parameter 200
Optional Parametersot 200
EXAMPIE .. e 201

REFRESHSTATS : Refresh Statistical Values 201
Optional Parametersot 201
EXAMPIE .. 203

RELEASE : Release DesCriptorcoviiiii e 203
Essential ParameterS. . ..o 203
Optional Parametersot 204
EXAMPIE .. 204

Table of Contents

RENAME : RenameFile/Database 205
Essential Parameter 205
Optional Parameterso e 205
EXAMPIES .o e 206

RENUMBER : ChangeFileNumber i, 206
Essential Parameter 206
Optional Parameter . ..ot 206
EXAMPIE ..o 207

RESETDIB : Reset Entriesin Active Utility List 207
Essential ParameterSo 208
Optional Parameters . .. oot 208
EXAMPIES .o 208

TRANSACTIONS : Suspend and Resume Transactions 209
Essential ParameterSo 210
Optional Parametersot 211
EXAMPIE .. e 211

UNCOUPLE : UncoupleFiles. ... i 212
Essential Parameter 212
Optional Parametersot 212
EXAMPIE .. 213

JCL/IJCSRequirementsand Examples., 213
Collation with User EXit oo e e 213
BS2000 .. 214
OS/390 0r Z/OS ..o 215
VIM/ESA O Z/V M o e 216
VO E S A L e e 217

. ADADCK : CHECK DATA STORAGE 219

Functional OVervVIiew e e 219

DSCHECK : Check DataStoragecoviiniiii it 220
Optional Parameters and Subparameterst e 220
EXAMPIES . 221

JCL/IJCSRequirementsand Examples., 222
BS2000 . ..t 222
OS/390 0r Z/OS ..o 223

Vi

Adabas Utilities Manual, Volume 1

7.

8.

VIl

VIM/ESA OF Z/V M o e 225
VO ESA . e 226
ADADEF : DEFINE A DATABASE i 227
Functional OVerview i e e 227
Datahase ComMpPONENtSottt e e e e e 227
Checkpoint File 227
DEFINE : Defining a Database and Checkpoint File 228
Y 1= G 228
Essential Parameterso 229
Optional Parameters . .. oot 231
EXAMPIES . e 236
MODIFY : ChangeEncodingsiiiiiiiiiiiinannn. 237
Optional Parametersot 238
EXAMPIES . 239
NEWWORK : DefiningaWork File 240
Essential Parameter 240
Optional Parameterso 241
EXAMPIE .. e 241
JCL/IJCSRequirementsand Examples. ..., 241
BS2000 . . et 242
OS/390 0r Z/OS ..o 245
VIM/ESA O Z/NV M o e 247
VO E S A o e 249
ADAFRM : FORM AT ... e e e 251
Functional OVerview i e e 251
Statement ReSIHCHIONSt e 251
Formatting Operationcuu it e 251
Formatting MOdES o 252
Y 1= G 252
Essential Parameter 254
Optional Parameterso 254
EXAMPIES .o 255

Table of Contents

JCL/IJCSRequirementsand Examples., 257
BS2000 . . ittt e e 257
OS/390 0F ZIOS . . oottt e e e 259
VMIESA OF ZIVM e e e e e e 261
VOB ESA .ttt 262

. ADAICK :

CHECK INDEX AND ADDRESSCONVERTER 265

Functional OVEIVIEW i e e 265
Summary of FUNCHIONS e e e e e 266

ACCHECK : Check AddressConvertercoiiiiiiininenan... 267
Essential Parameter 267
Optional Parametersot 267

ASSOPRINT : Print/Dump Associator Blocks 268
Essential Parameter e 268
Optional Parameter oo 268

BATCH : Set Printout Width to 132 CharactersPerLine 269
Optional Parametert e 269

DATAPRINT : Print/Dump Data StorageBlocks 270
Essential Parameter e 270
Optional Parameter oo 270

DSCHECK : Print/Dump Content of Data StorageRecord 271
Essential Parameter 271
Optional Parameters . .. oot 271

DUMP : Suspend Dump SUPPreSSIoN .. .ovve v it e e 272
Optional Parametert 272

FCBPRINT : Print/Dump File Control Block 273
Essential Parameter 273
Optional Parameterso 273

FDTPRINT : Print/Dump Field Definition Table 274
Essential Parameter 274
Optional Parametersot 274

GCBPRINT : Print/Dump General Control Block 275
Optional Parametert 275

Adabas Utilities Manual, Volume 1

10.

ICHECK : Check Index and AddressConvertercoovn... 276
Essential Parameter e e 276
Optional Parametersot 276

INT : Cancel Formatted Printout Suppressioncovuvunen... 277
Optional Parametert e 277

NIPRINT : Print/Dump Normal Indexccciiuion... 278
Essential Parameter e 278
Optional Parameter . ..ot 278

NOBATCH : Set Print Width to 80 CharactersPer Line................... 279
Optional Parametert 279

NODUMP : SUPPresSDUMPS . ..o oot e e e 280
Optional Parameter e 280

NOINT : Suppress Formatted Printout 281
Optional Parameter e 281

PPTPRINT : Print/Dump Parallel Participant Table 282
Optional Parametersot 282
EXample OUIPUL 283

UIPRINT : Print/Dump Upper Index ..., 284
Essential Parameter e 284
Optional Parameterso 284

EXamplES .. 285

JCL/IJCSRequirementsand Examples., 286
Collation with User EXito e e 286
BS2000 . . vttt e 286
OS/390 0F ZIOS . . ettt e e e 288
VMIESA OF ZIVM e e e e e e e 289
VOB ESA .ttt 290

ADAINV INVERT ... e 291

Functional OVEIVIEW i e e 291

COUPLE : Define aFile-Coupling Descriptor ..., 292
Essential Parameterso 292
Optional Parametersot 293
EXAMPIE .. e 294
Temporary Spacefor File Coupling e e 295

Table of Contents

Associator Coupling ListSot e 296
Space for Coupling ListSot e 297
Space AllOCatiON 298
INVERT : Create aDesCriptorov i e 298
Essential ParameterSo 299
Optional Parameters and Subparameterst e 299
Space Allocation for the INVERT Function i, 302
EXAMPIES .o 302
JCL/IJCSRequirementsand Examples., 303
Collation with User EXit o e e 303
BS2000 ..t e 304
OS/390 0r Z/OS ..o 307
VIM/ESA O Z/V M o e 309
VO E S A . e e 311
11. ADALOD : LOADER ... e 313
Functional OVerview e 313
LOAD :Load aFile e 314
Essential ParameterSo 315
Optional Parameters and Subparameterst 318
EXAMPIES .o 332
LOAD Dataand Space ReqUIremMentSov ittt et et 334
Loading Expanded Files 337
Loading Multiclient Files i e e e e e e 340
UPDATE : Add/Delete Recordst 341
Essential Parametersot 342
Optional Parameters and Subparameterst e 343
EXAMPIES . 348
Formats for Specifying ISNS 349
UPDATE Dataand Space Requirementsttt 351
MassUpdatesof Expanded Fileso i e 353
Loader Storage Requirementsand Use 354
S oS 0] o = 354
DYNaMIC StOMAE ... vttt e e 354
TempDataset Space Usaget e 355
Sequential TeMP Datasetot e 355

XI

Adabas Utilities Manual, Volume 1

12.

Xl

ADALOD Space/StatisticSReport 356
JCL/IJCSRequirementsand Examples., 358
Coallation with User EXito e e e e 358
BS2000 . . vttt e 359
OS/390 OF ZIOS . . ettt e e e 363
VMIESA OF ZIVM e e e e e e 366
VOB ESA .ttt 369
ADAMER : ADAM ESTIMATION e 373
Functional OVEIVIEW i e e e 373
Estimate ADAM AccessRequirements, 374
Essential Parameterso 374
Optional Parametersot 375
EXAMPIES .o 377
ADAMER Output Report Description ..., 378
JCL/IJCSRequirementsand Examples., 379
BS2000 . . vttt e e e 379
OS/390 0F ZIOS . . ettt e e e 380
VMIESA OF ZIVM e e e e e e e e 381
VOB ESA .ttt 382
APPENDIX A : ADABASSEQUENTIALFILES 385
Sequential FileTable 385
Operating System Dependencies 389
BS2000 SYSIEMS o v ettt e e 389
OS/390 O MVS/ESA SYSIEIMS oottt e e e e e e e e e e e e e 394
VM/IESA SYSIBMS . . .o e ettt e et e e e e e e e e e e e e 395
VSE/ESA SYSIEITIS . ..o ittt ettt e e e e e e e e e 39

APPENDIX B :
PROCEDURESFOR VSE/ESA EXAMPLES 401

Table of Contents

APPENDIX C: SUPPLIED UESENCODINGS 403
Interoperable Encodings ... 404
Single-Byte Character Sets (Latin=1)uiinirii ittt 404
Single-Byte Character Sets (Non-Latin=1)iiiiiiii i, 405
Double- and Multiple-Byte Character Sets ...t 406
Coexistent ENCOdiNgS oo ot 407
Single-Byte CharaCter SetSot e e e e 407
Double- and Multiple-Byte Character Sets ...t 408
INDEX . . e 411

Xl

XV

GENERAL INFORMATION

Note:

Dataset names starting with DD are referred to in Adabas manuals with a slash separating the
DD from the remainder of the dataset name to accommodate VSE/ESA dataset names that do
not contain the DD prefix. The slash is not part of the dataset name.

About This Manual

The Adabas Utilities Manual comprises two volumes. The utilities are ordered alphabetically
by utility name over both volumes: volume 1 contains chapters for the utilities ADAACK
through ADAMER; volume 2 contains chapters for the utilities ADAORD through ADAZAP.
The chapters are also numbered consecutively over both volumes.

This chapter and appendixes A, B, and C are included in both volumes for your convenience.

Each Adabas utility is described in a separate chapter. For a single-function utility, the chapter
begins with a syntax diagram showing the utility statement and all possible parameters.
Chapters for utilities with multiple functions begin with a brief overview of the functions,
followed by the individual function syntax diagrams and descriptions.

Each function description contains
e syntax diagram with all parameters;
e individual parameter descriptions describing coding rules, restrictions, and defaults; and
e tility function examples.

Following the function descriptions are job control examples for the BS2000, z/OS and OS/390,
Z/VM and VM/ESA, and VSE/ESA operating systems.

Adabas Utilities Manual, Volume 1

Utility Control Statements

Control Statement Syntax

Utility control statements have the following format:

utility function parameter-list

—where

utility is the name of the utility to be executed. Examples of utility names include
ADAORD, ADADBS, ADAINV.

function is the name of the specific utility operation to be executed. For example:
ADAORD REORDATA
ADADBSADD

ADAINV COUPLE

Most single-function utilities (ADASEL, ADAULD, etc.) whose function is
implicit have either no function value or an optional one.

parameter-list isalist of parameters following the function.

Parameters in the list are almost always keywords with the format
“PARAMETER=value” . A parameter may have one or more operands, and
keyword parameters may be specified in any order.

Most parameters require that you select or otherwise specify an operand
value. Some operands are positional (valuel,value2,...,valuex), meaning
that the values must be in a certain order as described in the text. All
parameters must be separated by commas.

Parameter List

In the statement syntax descriptions in this manual, parameters are listed verticaly; that is,
“stacked”. Each list shows all possible parameters, from which one or more can (or must) be
specified. Although parameters in the list must be separated by commas, these commas are
omitted in the syntax statements when the parameters are stacked.

General Information

Required and Optional Parameters

Parameters can be required or optional. Optional parameters (or parameter groups) are shown
in sguare brackets []. For example, the ADADBS CHANGE function has the following
parameters:

ADADBS CHANGE FILE=file-number
FIELD="field-name’
LENGTH=new-length
[PASSWORD="password’]
[TEST]

The ADADBS CHANGE operation changes the standard length of an Adabasfield. The FILE
that contains the field to be changed must be specified, as well as the FIELD and the new
standard LENGTH for the field. The PASSWORD parameter must be specified only if the
specified fileis password-protected. You can choose to specify the TEST parameter or not; there
are no circumstances where it is required.

Some optional parameters have default values that are used if the parameter is not specified.
Default values are indicated by underlined values (see the section Default Parameter Values

on page 9).

Subparameters

Indented parameter lists are subparameters; they cannot be specified unless the parameter
above the list is also specified. The following example shows the syntax for subparameters of
the FILE parameter:

utility function [FILE=file-number]
DATAPFAC=padding-factor
DSRABN=startng-rabn
[DSSIZE=size]
[NU]

FILE is an optiona parameter. If FILE= is actually specified, then DATAPFAC and DSRABN
must also be specified. Note that any subparameter that is not enclosed in square brackets is
required, and listed first. The remaining parameters indented under FILE and enclosed in square
brackets can optionally be specified when the FILE parameter is specified.

Adabas Utilities Manual, Volume 1

Mutually Exclusive Parameters

Parameters that cannot be specified with each other are called mutually exclusive parameters,
and are shown in curly brackets, otherwise known as braces{ }.

When parameters are stacked and enclosed in braces, one parameter must be specified, but only
one can be specified. For example, in the following parameter list:

ADADBS INCREASE { ASSOSIZE=size | DATASIZE=size }
[TEST]

—either the parameter ASSOSIZE or DATASIZE must be specified when executing ADADBS
INCREASE; but not both.

Optionally, the parameter TEST may be specified with either ASSOSIZE or DATASIZE.
The following example shows just one of the parameter options of ADAREP REPORT:
ADAREP [REPORT] [{ LIMCOUNT | NOCOUNT }]

In this case, the braces{ } within the square brackets[] indicate that, if you choose to specify
the parameter option at al, either LIMCOUNT or NOCOUNT may be specified.

ADAREP reads the address converter to determine the value for RECORDS LOADED for afile.
For very large records, this can result in alarge amount of 1/O activity.

. If LIMCOUNT is specified, ADAREP checks the value for TOPISN for thefile. If TOPISN is
greater than 1000, “NOT COUNTED” appears under RECORDS LOADED.

. If NOCOUNT is specified, no value appears under RECORDS LOADED for any file.

. If neither LIMCOUNT nor NOCOUNT is specified, ADAREP compiles the exact value for
RECORDS LOADED for each file.

General Information

Repeating Parameters and Values

Some parameters can be repeated, and some parameters can specify multiple values. An ellipsis
(...) following the parameter or value indicates that it may be repeated. A commarellipsis (,...)
following the parameter or value indicates that it may be repeated and that repetitions must be
separated by a comma.

For longer parameters, parameter combinations, or other lengthy values that can be repeated,
the repeatable portion of the syntax is enclosed in braces, followed immediately by a separating
comma and ellipsis.

In the following example, FILECRIT and FILEVAL use the '{ },..." notation to indicate that
multiple complex criteria and value entries may be specified, respectively.

ADALOD LOAD FILE=file-number [, file-type]
DSSIZE=size
MAXISN=maximum-number-of-records
SORTSIZE=size
TEMPSIZE=size
FILECRIT={ ‘{file-selection-criteria}, ...", FILEVAL="value, ..." |
‘ISN’, MINISN=lowest-allocated-isn }

Some utilities allow a function or parameter itself to be specified multiple times, usually each
on separate function statements. For instance, ADACMP field definition statements (FNDEF)
might be specified as follows:

ADACMP COMPRESS NUMREC=1000
ADACMP FNDEF='01,AA,8,B,DE’
ADACMP FNDEF='01,BA,6,A,NU’
ADACMP FNDEF='01,BB,8,P,NU’
ADACMP FNDEF='01,AD,1,A,FI
ADACMP SUBDE="CA=BA(1,3)’

Adabas Utilities Manual, Volume 1

Control Statement Rules

The following rules apply for the construction of utility control statements:

1 Each control statement must contain a utility name in positions 1-6.

2. The utility function name follows the utility name, separated by at least one space.

3. Keyword parameter entries and multiple values within keyword entries must be separated by
commeas.

4, No space is permitted before or after “=".

5. The comma following the last parameter entry of a statement is optional.

6. Control statement processing ends with position 72 or when a space is encountered after the
beginning of the parameter list. Entries made in positions 73-80 are not processed.

7. A statement that contains an asterisk “*” in position 1 isread as a comment and is not processed.

8. Control statements are continued by specifying the extra parameters on a new statement

following (and separated by at least one space from) the utility name in positions 1-6.

Parameter Values

Variable values actually specified following the equals “=" sign in parameters (represented by
italicized labels in the preceding examples and elsewhere in this manual) have the following

syntax:

parameter = value
parameter = value-list
parameter = value-range

—where “value” is as described in the following sections. “Value-list” and “value-range” are
variations of “value’, and are alowed either in place of or with “value”, depending on the
individual parameter rules as described in the text.

General Information

value

“Value’ may consist of anumber or a string of a phanumeric or hexadecimal characters. In some
optional keyword parameters, a default value is assumed if the parameter is not specified; see
the section Default Parameter Values on page 9 for more information.

Alphanumeric Values

Alphanumeric values are specified in one of the following ways:

If the value comprises. .. Apostrophes around it are. . .
only upper- or lowercase letters, numeric digits and optional
minus (-)

any other characters including an apostrophe itself required

(which must be entered twice)

Numeric Values

Numeric values are specified as follows:

If thevaluerepresents. . . Specify . ..
anumber of either blocksor the letter B must immediately follow the value if blocks are
cylinders being specified; otherwise, cylinders are assumed:
SIZE=200B (200 blocks)
SIZE=200 (200 cylinders)
an Adabas file aone- to four-digit number (leading zeros permitted):
FILE=3
FILE=03
FILE=162
a device type afour-digit number corresponding to the model number of
the device type to be used:
DEVICE=3380
afield name or descriptor a two-character field name corresponding to the field name
or descriptor:
FIELD1=NA

Hexadecimal values are accepted if thisis specified in the parameter description. Hexadecimal
values must be within apostrophes following the indicator X:

X'0002DC9OF’

Adabas Utilities Manual, Volume 1

value-list

value,... (numeric values)

BITRANGE=2,10,2

or
'value,..."” (aphanumeric values)

UQDE="AA,ACAF’

value-range

value —value,...

ISN=600-900,1000-1200

Individual values within a value list or value range may be positiona if they relate to values
specified on corresponding parameters. For example:

ADADBS UNCOUPLE FILES=13,20,PASSWORD="PW13,PW20’

—instructs the ADADBS UNCOUPLE function to uncouple files 13 and 20, which are
password-protected.

The passwords (specified by the PASSWORD parameter) must be in the same order as their
corresponding files in the FILES parameter.

If file 13 is not password-protected, either the PASSWORD parameter must be specified with
a “placeholder” comma as shown below

... PASSWORD=",PW20’

—to position the password “PW20" to the corresponding position of file 20 in the FILES value
list, or FILES must specify file 20 first.

General Information

Default Parameter Values

In the ADADBS ADD function, for example, the optional ASSODEV parameter can specify
the device type where the ADADBS ADD function allocates the new dataset space; if
ASSODEYV isnot specified, a currently effective device type (the “ default”) is assumed—in this
case, a 3380 disk device. Where appropriate, default values or settings are shown underlined
in the syntax statement:

[FILE={file-number | 1 }]
Otherwise, the defaults are explained in the accompanying parameter descriptions. If desired,

the default value can be explicitly entered (in this example, FILE=1).

If the default is a value originally established by some other control statement, the parameter
name is shown in underlined italics as the defaullt:

[TTSYN={ seconds | ADARUN-tt }]
Here, the default is the value already set by the TT parameter in the Adabas runtime control

(ADARUN) statement, which isin effect if TTSYN is not specified. The value “tt” should not
actualy be entered.

10

ADAACK : CHECK ADDRESS CONVERTER

Functional Overview

A wbd PR

ADAACK checks the address converter for a specified file, arange of files, or all files and/or
for a specified ISN range or al ISNs. It is used in conjunction with ADAICK.

ADAACK checks each address converter element to determine whether the Data Storage
RABN iswithin the used portion of the Data Storage extents specified in the file control block
(FCB).

ADAACK checksthe ISN for each record in each Data Storage block (within the specified ISN
range) to ensure that the address converter element for that ISN contains the correct Data
Storage RABN. This is done in the following way:

Main memory is alocated for the specified range of ISNs (number of ISNs, times 4). If no range
is specified, the entire range (MINISN through TOPISN) is checked.

The address converter is read from the database into this area in memory.

Each used Data Storage block (according to the Data Storage extents in the FCB) is read and
checked against the address converter in memory. Each ISN in the address converter must have
exactly one associated Data Storage record.

The address converter in memory is checked for ISNs that did not occur in Data Storage.

For large files, ADAACK may run for along time. ADAACK prints a message line after every
20 Data Storage blocks processed.

Run time is not affected by the ISN range, since al used Data Storage blocks are read.
Notes:

ADAACK does not require the Adabas nucleus to be active.

A pending autorestart condition is ignored.

ADAACK does not synchronize with the nucleus in case of parallel updating.
This utility should be used only for diagnostic purposes.

ADAACK returns a condition code 8 if any errors occur.

11

Adabas Utilities Manual, Volume 1

ACCHECK :
Check Address Converter Against Data Storage

ADAACK ACCHECK [FILE={file | file — file | all-files}]
[ISN={isn — isn | all-isns}]
[INOUSERABEND]

Optional Parameters
FILE : Filesto be Checked

The file, single range of files, or al files to be checked. By default, all filesin the database are
checked.

ISN : 1SN Range to be Checked
A range of ISNsor al ISNsto be checked. By default, the entire range MINISN through TOPISN
is checked.

NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” isdisplayed and
the utility terminates with condition code 20.

12

Examples

Example 1:
ADAACK ACCHECK

Check all files in the database.

Example 2:
ADAACK ACCHECK FILE=12, ISN=1-8000

Check ISNs 1 through 8000 for file 12.

Example 3:
ADAACK ACCHECK FILE=8-10

Check al ISNsiin files 8 through 10.

ADAACK

13

Adabas Utilities Manual, Volume 1

JCL/JCS Requirements and Examples

This section describes the job control information required to run ADAACK with BS2000, ZOS
or 0S/390, zZ/VM or VM/ESA, and VSE/ESA systems and shows examples of each of the job

streams.

BS2000
Dataset Link Name Storage More Information
Associator DDASSORN disk
Data Storage DDDATARN disk
ADARUN parameters SYSDTA/ DDCARD Operations Manual
ADAACK parameters SYSDTA/ DDKARTE
ADARUN messages SYSOUT DDPRINT Messages and Codes
ADAACK messages SYSLST DDDRUCK Messages and Codes

ADAACK JCL Examples (BS2000)

In SDF Format:

/ .ADAACK LOGON

/MODIFY-TEST-OPTIONS DUMP=YES

/REMARK *

/REMARK * A D A A C K ADDRESS CONVERTER CHECK
/REMARK *

/REMARK *

/ASS-SYSLST L.ACK.DATA

/ASS-SYSDTA *SYSCMD

/SET-FILE-LINK DDLIB,ADAvrs.MOD

/SET-FILE-LINK DDASSOR1,ADAYyyyy.ASSO, SHARE-UPD=YES
/SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA, SHARE-UPD=YES
/START-PROGRAM *M (ADA.MOD, ADARUN) , PR-MO=ANY

ADARUN PROG=ADAACK,DB=yyyyy, IDTNAME=ADABASS5B
ADAACK ACCHECK FILE=ffff

/LOGOFF SYS-OUTPUT=DEL

14

ADAACK

In ISP Format:

/ .ADAACK LOGON

/OPTION MSG=FH,DUMP=YES

/REMARK *

/REMARK * A D A A C K ADDRESS CONVERTER CHECK
/REMARK *

/REMARK *

/SYSFILE SYSLST=L.ACK.DATA

/FILE ADAvrs.MOD ,LINK=DDLIB

/FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
/FILE ADAyyyyy.DATA ,LINK=DDDATARI, SHARUPD=YES
/EXEC (ADARUN, ADA.MOD)

ADARUN PROG=ADAACK,DB=yyyyy, IDTNAME=ADABASS5B
ADAACK ACCHECK FILE=ffff

/LOGOFF NOSPOOL

15

Adabas Utilities Manual, Volume 1

z/0Sor OS390

ADAACK JCL Example (Z/OS or OS/390)

16

Dataset DD Name Storage More Information
Associator DDASSORN disk

Data Storage DDDATARN disk

ADAACK messages DDDRUCK printer Messages and Codes
ADARUN messages DDPRINT printer Messages and Codes
ADARUN parameters DDCARD reader Operations Manual
ADAACK parameters DDKARTE reader

/ /ADAACK JOB

//*

//* ADAACK :

//* ADDRESS CONVERTER CHECK
//*

//ACK EXEC PGM=ADARUN

//STEPLIB DD
//*

//DDASSOR1 DD
//DDDATAR1 DD
/ /DDDRUCK DD
//DDPRINT DD
//SYSUDUMP DD
/ /DDCARD DD

DISP=SHR, DSN=ADABAS.Vvrs.LOAD

DISP=SHR, DSN=EXAMPLE.DByyyyy.ASSOR1 <
DISP=SHR, DSN=EXAMPLE.DByyyyy.DATAR1 <

SYSOUT=X
SYSOUT=X
SYSOUT=X

*

<=== ADABAS LOAD

ASSO
DATA

ADARUN PROG=ADAACK, SVC=xxx,DEVICE=dddd, DBID=yyyyy

/*
/ /DDKARTE DD

*

ADAACK ACCHECK FILE=ffff

/*
//

Refer to ADAACK in the MV SJOBS dataset for this example.

zZ/VM or VM/ESA

ADAACK

Dataset DD Name Storage More Information
Associator DDASSORn disk
Data Storage DDDATARnN disk

ADAACK messages DDDRUCK disk/ terminal/ printer
ADARUN messages DDPRINT disk/ terminal/ printer
ADARUN parameters DDCARD disk/ terminal/ reader
ADAACK parameters DDKARTE disk/ terminal/ reader

ADAACK JCL Example (zZVM or VM/ESA)

DATADEF DDASSOR1,DSN=ADABASVvV.ASSO,VOL=ASSOV1
DATADEF DDDATAR1, DSN=ADABASVv.DATA,VOL=DATAV1
DATADEF DDPRINT, DSN=ADAACK.DDPRINT,6 MODE=A
DATADEF DUMP, DUMMY

DATADEF DDDRUCK, DSN=ADAACK.DDDRUCK, MODE=A
DATADEF DDCARD, DSN=RUNACK.CONTROL, MODE=A
DATADEF DDKARTE, DSN=ADAACK.CONTROL, MODE=A
ADARUN

Contents of RUNACK CONTROL A1:

ADARUN PROG=ADAACK, DEVICE=dddd, DB=yyyyy

Contents of ADAACK CONTROL Al:

ADAACK ACCHECK FILE=ffff

Messages and Codes
Messages and Codes
Operations Manual

17

Adabas Utilities Manual, Volume 1

VSE/ESA
File Symbolic Storage Logical More Information
Name Unit
Associator ASSORNn disk *
Data Storage DATARn disk *
ADAACK messages printer SYS009 Messages and Codes
ADARUN messages printer SYSLST Messages and Codes
ADARUN parameters reader SYSRDR
CARD tape SY S000
CARD disk *
ADAACK parameters reader SYSIPT

* Any programmer logical unit may be used.

ADAACK JCS Example (VSE/ESA)
See appendix B for descriptions of the VSE/ESA procedures (PROCS).

* $$ JOB JNM=ADAACK, CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D

* ADDRESS CONVERTER CHECK

// JOB ADAACK

// EXEC PROC=ADAVVLIB

// EXEC PROC=ADAVVFIL

// EXEC ADARUN, SIZE=ADARUN

ADARUN PROG=ADAACK, SVC=xxx,DEVICE=dddd, DBID=yyyyy
/*

ADAACK ACCHECK FILE=27

/*

/&

* $$ EOJ

Refer to member ADAACK.X for this example.

18

ADACDC : CHANGED-DATA CAPTURE

Functional Overview

The ADACDC utility

e takesasinput one or more sequential protection logs; and

e produces as output a delta of all changes made to the database over the period covered by the
input protection logs.

“Delta of changes’ means that the last change to each ISN in afile that was altered during this
period appears on the primary output file.

This output may be used on aregular basis as input for data warehousing population procedures
so that the delta of changes to a database is applied to the data warehouse database rather than
a copy of the entire database. This affords more frequent and less time consuming updates to
the data warehouse, ensuring greater accuracy of the information stored there.

In order to run the ADACDC utility

e anexterna sorter must be available and installed as the standard sorter in the operating system.
See page 27 for more information.

e theexternal sorter must have access to the database’s Associator containing the FDTs of thefiles
for which records are to be processed.

Phases of Operation and Resulting Files

ADACDC processes sequential protection logs in two phases. You can execute phase 1 and
phase 2 separately, or both at once (the default):

. If phase 2 is being run separately or both phases are being completed together, the data is
decompressed and written to the primary output file.

. If only phase 1 isbeing executed, the data is written to an extract file. This extract file may then
be processed multiple times by a phase 2 operation to decompress the records and write to
primary output files.

The extract file contains data records in compressed format whereas the primary output file
contains records in decompressed format. Refer to the chapter ADACMP (Compress —
Decompr ess) in this manual for more information about these formats.

19

Adabas Utilities Manual, Volume 1

The primary output file and the extract file are standard operating-system-dependent files that
can handle variable length records.

Phase 1 and the Extract File

During phase 1, updates from the protection logs are analyzed and prefixed with a standard
structure called the CDCE. The format of each record on the file is a constant CDCE prefix
followed by the compressed record information. These records are passed to an external SORT
routine to establish the most recent update for each ISN on afile. Only the last change for agiven
file and ISN combination is written.

The extract file created when phase 1 is run separately makes it possible to process the PLOG
data once and then optionally produce multiple primary output files from it based, for example,
on file selection criteria. The option is useful if different file changes are required for different
purposes.

When the phase 1 processis being run, the extract file is opened for output. As records are output
from the SORT processing, the latest update for each file and ISN combination is written to the
extract fileif

the update was performed by an ET user and belongs to a completed transaction; or

the update was performed by an EXU user and belongs to a completed command; or

NOET is specified.

All other updates for the file and ISN combination for that period are discarded if there are no

controlled utility operations against that file (see the section Checkpoints Written to the
Primary Output File on page 21).

Note:

It is possible to have duplicate file and |SN combinations on the file if the ADACDC user exit
(described later) adds records with file and |SN combination that already exist. A record added
or modified by the user exit is so marked in the CDCE structure.

Phase 2 or Both and the Primary Output File

20

The primary output file is used when both stages of ADACDC are run together, or for phase 2
processing only.

If both phases are run together, the primary output file is opened and created directly using the
output from the SORT processing. In this case, processing occurs as for the extract file for phase
1 processing.

ADACDC

. If only phase 2 is run, the primary output file is created using input from the extract file.

The format of each record on the fileis a constant CDCO prefix followed by the decompressed
record information. If for some reason the record cannot be decompressed, a warning message
isissued and the compressed record is written to the primary output dataset. A flag in the CDCO
structure informs a user program when decompression for the record has failed.

Note:

It is possible to have duplicate file and |SN combinations on the file if the ADACDC user exit
(described later) addsrecords with file and 1SN combinations that already exist. A record added
or modified by the user exit is so marked in the CDCO structure.

Checkpoints Written to the Primary Output File

The primary objective of the ADACDC utility is to provide an output dataset containing the
most recent changes for each ISN in afile that has been modified for the period concerned.

Apart from simple changes to a file, some utility operations executed against a file may
fundamentally affect its contents. For example, if the file is deleted, simply providing the last
updates for ISNs in the file does not accurately reflect the state of the file since all ISNs have
been deleted.

For this reason, the following checkpoints are recorded and written to the primary output file
as appropriate with the associated indication in the output record:

ADASAV RESTORE FILE File created
ADAORD STORE FILE File created
ADALOD LOAD FILE File created
ADALOD UPDATE FILE File updated
ADADBS DELETE FILE File deleted
ADADBD REFRESH FILE File deleted

Because these operations can fundamentally impact a file and its appearance, the checkpoint
is written to the primary output dataset when it occurs relative to the other updates.

ADACDOC retains the last change to all 1SNs before each of the above checkpoints. This means
that afile and ISN combination could appear multiple times on the primary output file if one
or more checkpoints were written to it. Thisis useful for the many data warehouse packages that
may wish to complete their view of afile and maintain a copy of it prior to deletion, re-creation,
or mass update.

21

Adabas Utilities Manual, Volume 1

Primary Input Data

The primary input data comprises sequential protection logs produced either
by the database directly; or
by the ADARES PLCOPY of nonsequential protection logs.

ADACDC processes this data to ensure that

when a new PLOG block is read and the PLOG number is the same, the PLOG block number
is 1 greater than the previous PLOG block number.

when the PLOG number itself changes, the new PLOG number is higher than the previous
PLOG number and the new PLOG block number is 1.

Note:

When the PLOG number changes and the difference between the PLOG numbersis greater than
1, awarning message isissued and processing continues as this can legitimately happen if online
saves are used.

If any of these checks fail, the utility execution terminates.

Primary Output Data

22

The primary output data is a sequential file comprising all database records that were added,
updated, or deleted during the period covered by the input protection logs.

If arecord was changed several times, only itslast change appears in the output file. ADACDC
employs a SORT process to identify multiple changes to the same record.

Each primary output record comprises a fixed-length record prefix followed by the database
record in decompressed form. The decompressed data corresponds in format to the output of the
ADACMP DECOMPRESS function (see page 57 for more information).

The primary output record prefix is described by the CDCO DSECT. It has the following
structure:

ADACDC

Bytes Description

0-1 record length (binary)
2-3 set to zeros

47 constant ‘CDCO’

89 database ID

1011 file number
12-15 ISN of the updated record
16-19 length of the decompressed data in bytes
2047 28-byte communication ID of the last user who updated the record
48 change indicator:
X‘04" record added
X‘08 record updated
X‘0C record deleted
X‘10' file created
X'14 file updated
X‘18 file deleted or refreshed
49 flags (independent bit settings):
X'80" record added by user exit
X'40" record modified by user exit
X'20" record still compressed; decompression failed

50 database version indicator
51-67 reserved for future use
68—... decompressed record data

Transaction File

To maintain input data checking over multiple runs of the utility, ADACDC stores information
on the transaction file in atransaction control record containing the last database 1D, the PLOG
number, and the PLOG block number processed. This information is used to verify the latest
input (unless the RESETTXF option is specified — see page 26).

ADACDC actually recognizes two different transaction files: input and output. Both transaction
files are standard operating-system-dependent files that can handle variable length records.

23

Adabas Utilities Manual, Volume 1

Input Transaction File Processing

During the input processing stage, ADACDC processes the input transaction file to the SORT
program.

Following the control record on the input transaction file, 0 or more records may be found. These
are database updates related to transactions not completed during the last run of the utility. These
records are processed again as part of the input as their transactions will normally have been
completed in the next sequential protection logs provided to the utility. This is the reason the
sequence of protection logs is so important: updates may remain outstanding forever if the
correct sequence is not maintained.

The transaction file also records whether the NOET option was specified during the last phase
1 run of the utility. When ADACDC detects that this option has changed from one utility
execution to the next, it uses the information from the control record on the input transaction
file; however, al transactional information in the other records isignored. Thisis due to the fact
that changing this option may cause inconsistent data to be written to the primary output file
or extract file, as appropriate. ADACDC issues a warning when this happens.

Output Transaction File Processing

Once output processing from the SORT program starts, the input transaction file is closed and
the output transaction file is opened. The control record is written to the output transaction file
followed by any updates that relate to incompl ete transactions or, in the case where the NOET
option isin effect or an EXU user isin control, to incomplete commands. The output transaction
file is closed once processing is complete.

Using a Single Transaction File

24

It is possible to use the same file as both the input and output transaction file; however, if the
utility fails while writing to the output transaction file (that is, at any time during the output
processing of the SORT utility), the input transaction file will no longer exist and therefore,
rerunning the utility will yield a different result.

For this reason, the transaction file must be backed up prior to the utility run so that it can be
restored in the event of afailure.

Alternatively, you could use a facility on your operating system (if available) that produces a
new version of afile whenever a program updates the file.

ADACDC

Running the Utility

ADACDC [FILE= filelist]
[NOET]
[PHASE=1[2|BOTH]
[RESETTXF]

The first time you run the ADACDC utility, use the following syntax and either not specify or
dummy the input transaction file (CDCTXI) to create a valid transaction file for input to
subsequent runs:

ADACDC RESETTXF,PHASE=BOTH
The RESETTXF option ignores the absent or dummied input transaction file, reads the primary
input data, and produces primary output using the input data.

After the input transaction file has been created during the first run, only the utility name
ADACDC is required to run this utility; the PHASE parameter defaults to BOTH. Parameter
options are explained in the following sections.

Optional Parameters
FILE : Files Processed
Use the FILE parameter to limit the file(s) processed by the utility and written to the output file:
e For phase 1 operation, only records relating to the files specified are written to the extract file.

e For phase 2 and BOTH operations, only records relating to the files specified are written to the
primary output file.

Note:
Clearly, files required for phase 2 processing must have been specified on the previous phase
1 operation that created the input extract file.

When this parameter is not specified, all files are processed by the utility.

25

Adabas Utilities Manual, Volume 1

NOET : BypassET Processing

ADACDC normally accepts for processing only those records that are part of completed
transactions or, in the case of EXU users, records that are part of completed commands.

Use the NOET option to bypass this transaction processing when PHASE=1 or PHASE=BOTH.
NOET has no effect when PHASE=2 because the input is the extract file from phase 1 which
has already processed the protection log (PLOG) input with or without the NOET option.

When NOET is specified, any update made to the database is processed and written to the extract
file (PHASE=1) or primary output file (PHASE=BOTH) as soon as it is encountered on the
PLOG.

Warning:

Soecifying this option may result in updates recorded on the primary output file that are related
to transactions that were not complete at the end of the input PLOG.

PHASE : Execution Phase

The PHASE parameter determines the input the utility requires and the output it produces:

PHASE=1 reads the sequential PLOG input and produces an interim extract file for later
processing by a phase 2 step.

PHASE=2 reads an extract file produced by a previously executed phase 1 step and produces
a primary output file containing the delta of changes made to the file.

PHASE=BOTH (the default) reads the sequential PLOG input and produces the primary output
file containing the delta of changes directly without reading or writing an extract file.

Refer to the section Phases of Operation and Resulting Files on page 19 for more information.

RESETTXF : Reset Input Transaction File

26

ADACDC checks the primary input data to the utility to ensure that the PLOGs are read in
sequence, by PLOG block and PLOG number. If these checks fail, the utility execution
terminates.

To maintain the checks over multiple runs of the utility, ADACDC maintains input and output
transaction files. These files also track record updates related to incomplete transactions or, in
the case of EXU users, incomplete commands from one utility execution to the next. Normally,
such incomplete transactions or commands are completed in the next sequential PLOGs
provided to the utility.

ADACDC

However, if the need arises to process PLOGs out of sequence and the information in the
transaction file can be safely removed, the RESETTXF option can be used to reset the
transaction file so that the checks are bypassed and all outstanding transaction or command data
isignored for agiven run. ADACDC ignores information on the input transaction file and writes
the output transaction file at end of job.

Warning:
If the sequence of PLOGs is interrupted, record updates related to incomplete transactions
recorded in the transaction file may remain outstanding indefinitely.

Operating System Considerations

For its sort requirements, the ADACDC utility uses a standard sort function installed in the
operating system. The following additional considerations should be taken into account for each
operating system.

z/0Sor OS390

No additional job steps are required by ADACDC when the sort function isinvoked. However,
depending on the amount of data to be sorted, the ADACDC job step may require additional
sort-related DD statements for work files or for other sort-specific facilities. Refer to the sort
documentation for more details.

Note:
A sort package generally supplies summary information when a SYSOUT DD statement is
specified.

When ADACDC invokes sort, it expects by default to transfer control to aload module named
‘SORT’. If the sort module has a different name, you must reassemble and link the Adabas
options module ADAOPD, specifying the name of the external sort program as follows:

1 Modify the OPDOS member, specifying the name of the sort program in parameter
SORTPGM=.
2. Modify and run member ASMLOPD to assemble and link the module ADAOPD.

27

Adabas Utilities Manual, Volume 1

VSE/ESA

Whenever an external sort may be called, an ADACDC utility job must reserve space in the
partition area. The EXEC statement must therefore specify the SIZE parameter as either

// EXEC ADARUN, SIZE= (ADARUN, 128K)

or

// EXEC ADARUN, SIZE= (AUTO, 128K)

No additional job steps are required by ADACDC when the sort function isinvoked. However,
depending on the amount of data to be sorted, the ADACDC job step may require additional
sort-related DLBL statements for work files or for other sort-specific facilities. Refer to the sort
documentation for more details.

When ADACDC invokes sort, it expects by default to transfer control to aload module named
‘SORT’. If the sort module has a different name, the Adabas options module ADAOPD must
first be reassembled and relinked with the correct name of the sort module in parameter
SORTPGM. See the section Modify, Assemble, and Link the Adabas Options Table in the
chapter VSE/ESA Systems I nstallation of the Adabas Installation Manual for VSE/ESA.

BS2000

28

The Siemens external sort may be called for large sort operations. The following job cards are
required.
/SET-FILE-LINK BLSLIBnn,$.SORTLIB

/SET-FILE-LINK SORTWK1, #SORTWK, BUF-LEN=STD (2) , OPEN-MODE=OUTIN
/CREATE-FILE #SORTWK, PUB (SPACE= (&PRIM, &SEC))

/START-PROGRAM, RUN-MODE=ADVANCED, ALT-LIBRARY=YES
—where

nn is a value between 00 and 99

#SORTWK was created with the BS2000 command

&PRIM is the number of primary PAM pages to alocate
&SEC is the number of secondary PAM pages to allocate
Note:

The size of the SORTWK1 file depends on the amount of data to be sorted.

ADACDC

The ADACDC User Exit

ADACDC calsauser exit at various pointsin its processing, providing you with the opportunity
to intercede in that processing.

Installing the Exit

= To install the user exit
1 Compile the user exit you wish ADACDC to use as module name ADACDCUX.

2. Make the module available to the ADACDC tility.

A sample user exit called ADACDCUX is provided on the source dataset. The only function of
the sample is to show you how to add, delete, and update records using the user exit interface.

User Exit Interface
The user exit is called with the following registers set:

R1 —> user parameter list

R13 — standard 72-byte register save area
R14 —> return address

R15 —> entry point

The user parameter list contains two pointers:
e thefirst to the ADACDC user exit parameter list mapped by the CDCU DSECT; and

e the second to the record area for the user exit where the record being processed is passed as
appropriate.

29

30

Adabas Utilities Manual, Volume 1

The action to be performed is indicated in the CDCUFUNC field whereas the action the user
exit directs ADACDC to take on return is indicated using the CDCURESP field.

Parameter List

User exit interface
control block

J—» Record data area

Figure 2-1: ADACDC User Exit

R1— >

The structure of the ADACDC user exit interface control block (CDCU DSECT) isasfollows:

Bytes
0-3
47
8-11
12

13

14-31

Description

constant ‘CDCU’

available for use by user exit

length of record in second parameter
function identifier:

X‘00" initialization

X'04 before pass to SORT input
X‘08 before write to extract file
X‘0C' before write to primary output file
X‘10' termination

response code from user exit:

X‘00" normal processing

X‘'04 ignore this record

X‘08 record has been updated
X‘0C' insert new record

reserved for future use

ADACDC

User Exit Calls

The following subsections describe the calls made to the user exit and their purpose.

Initialization Call (CDCUFUNC=CDCUINIT)

During initialization, ADACDC calls the user exit so that it can set up any areas it requires for
future processing. The CDCUUSER field is provided in the CDCU for anchoring a user control
block, if appropriate.

The record area pointer points to data that has no relevance for this call.

Termination Call (CDCUFUNC=CDCUTERM)

During termination, ADACDC calls the user exit so that it can close any open files or clean up
any areas till outstanding after ADACDC execution. For example, if an anchor pointer was set
in CDCUUSER, this area could be freed and the CDCUUSER field set to nulls.

The record area pointer points to data that has no relevance for this call.

SORT Input Call (CDCUFUNC=CDCUINPT)

ADACDC calls the user exit before arecord is passed to the SORT routine as input.
The record area pointer points to the compressed data record to be returned prefixed by the
CDCE control block.
The exit may €elect to

e continue processing normally;

e request that the record be ignored;

e update the current record; or

e add arecord, in which case the record pointed to by the record area pointer is passed to the SORT
routine. Thereafter, each time the exit is called, the same record is presented again until
— normal processing continues; or
— therecord isignored or updated, at which time processing continues with the next input
record.

Extract Output Call (CDCUFUNC=CDCUWRTE)

ADACDC cadlls the user exit before a record is written to the extract file during phase 1
processing. Thisexit point isonly called during phase 1 processing and has no relevancein other
Cases.

31

Adabas Utilities Manual, Volume 1

The record area pointer points to compressed the data record to be written prefixed by the CDCE
control block.

The exit may elect to

continue processing normally;
request that the record be ignored;
update the current record; or

add arecord, in which case the record pointed to by the record area pointer on return is written

to the extract file. Thereafter, each time the exit is called, the same record is presented again

until

— normal processing continues; or

— therecordisignored or updated, at which time processing continues with the next record
to be written to the extract file.

Primary Output Call (CDCUFUNC=CDCUWRTO)

32

ADACDOC callsthe user exit before arecord is written to the primary output file. This exit point
isnot called during phase 1 processing and has no relevance in this case.

The record area pointer points to the decompressed data record to be written prefixed by the
CDCO control block.

The exit may elect to

continue processing normally;
request that the record be ignored;
update the current record; or

add arecord, in which case the record pointed to by the record area pointer on return is written

to the primary output file. Thereafter, each time the exit is called, the same record is presented

again until

— normal processing continues; or

— therecord isignored or updated, at which time processing continues with the next record
to be written to the output file.

ADACDC

Updating or Adding Records

Consider the following points when updating or adding records from the exit:

e The CDCELEN/CDCERECL fields must correctly reflect the length of data following the
CDCEDATA field for the input and write extract exit points.

e The CDCOLEN/CDCORECL fields must correctly reflect the length of data following the
CDCODATA field for the input and write extract exit points.

e For the input exit point, records added should have a unique ISN if no ISN update is to be
replaced.

e For the input exit point where an ISN is to be replaced, the last occurrence of the ISN should
be updated or the replacement record for the ISN should be added after all occurrences for the
ISN have been seen.

¢ When adding records at the extract or primary output exit points, be aware that if file and ISN
combinations are duplicated, the duplicated information is written to the primary output file
which may confuse processing routines for that file.

Examples

ADACDC RESETTXF,PHASE=BOTH
Ignoring any information on the input transaction file, reads the primary input data and produces
primary output using the input data.

Use this syntax and either remove or dummy the input transaction file (CDCTXI) thefirst time
you run the utility to create a valid transaction file for input to subsequent runs.

ADACDC PHASE=1
ADACDC FILE=20
ADACDC FILE=40-50

Reads the primary input data and processes data only for files 20 and 40 to 50 inclusive. The
latest updates for each ISN on those files are written to the extract file.

ADACDC PHASE=2
ADACDC FILE=44-47

Reads a previously created extract file and writes all records for files 44, 45, 46, and 47 to the
primary output file.

33

Adabas Utilities Manual, Volume 1

JCL/JCS Requirements and Examples

This section describes the job control information required to run ADACDC with BS2000, zZ/OS
or 0S/390, zZ/VM or VM/ESA, and VSE/ESA and shows examples of each of the job streams.

BS2000
Dataset Link Name Storage More Information
Associator DDASSORn disk required to read the GCB and
FDT entries
Protection log DDSIIN/ tape/disk sequential log (not required
DDSIINNnn when PHASE=2)
Extract file CDCEXT tape/disk output or input extract file (not
required when PHASE=BOTH)
Input transaction file CDCTXI tape/disk not required when RESETTXF
is specified or when PHASE=2
Output transaction file CDCTXO tape/disk not required when PHASE=2
Primary output file CDCOUT tape/disk not required when PHASE=1
ADARUN parameters SYSDTA/ disk/terminal/ Operations Manual
DDCARD reader
ADACDC parameters SYSDTA/ disk/terminal/ Utilities Manual
DDKARTE reader
ADARUN messages DDPRINT disk/terminal/ Messages and Codes
printer
ADACDC messages DDDRUCK disk/terminal/ Messages and Codes
printer

34

ADACDC

ADACDC JCL Example (BS2000)

/ .ADACDC LOGON
/REMA ADACDC : CAPTURE DELTA CHANGES
/REMA
/ASS-SYSOUT EXAMPLE.ADACDC.SYSOUT
/MODIFY-TEST-OPTION DUMP=YES
/DELETE-FILE EXAMPLE.OQOUTPUT.TRANS.FILE
/SET-JOB-STEP
/DELETE-FILE EXAMPLE.OQOUTPUT.PRIMARY.FILE
/SET-JOB-STEP
/CREATE-FILE EXAMPLE.OUTPUT.TRANS.FILE, PUB (SPACE=(48,48))
/CREATE-FILE EXAMPLE.OUTPUT.PRIMARY.FILE, PUB (SPACE=(48,48))
/ASS-SYSDTA *SYSCMD
/SET-FILE-LINK DDASSOR1, EXAMPLE.DByyyyy.ASSOR1
/SET-FILE-LINK DDSIIN, EXAMPLE.DByyyyy.PLOG000
/SET-FILE-LINK DDSIINO1,EXAMPLE.DByyyyy.PLOG001
/SET-FILE-LINK DDSIINO2,EXAMPLE.DByyyyy.PLOG002
/SET-FILE-LINK DDSIINO3,EXAMPLE.DByyyyy.PLOG003
/SET-FILE-LINK CDCTXI, EXAMPLE.INPUT.TRANS.FILE
/SET-FILE-LINK CDCTXO, EXAMPLE.OQUTPUT.TRANS.FILE
/SET-FILE-LINK CDCOUT, EXAMPLE.OQUTPUT.PRIMARY.FILE
/SET-FILE-LINK DDDRUCK, EXAMPLE .ADACDC.DRUCK
/SET-FILE-LINK DDPRINT, EXAMPLE.ADACDC.PRINT
/SET-FILE-LINK DDLIB,ADABAS.Vvrs.MOD
/START-PROGRAM *M (ADABAS.Vvrs.MOD, ADARUN)
ADARUN

PROG=ADACDC, MODE=MULTI, IDTNAME=xxxxxxxX, DEVICE=dddd, DBID=yyyyy
ADACDC

PHASE=BOTH, FILE=1,10,20-30
/LOGOFF SYS-OUTPUT=DEL

NOSPOOL

Adabas Utilities Manual, Volume 1

z/0Sor OS390

Dataset
Associator

Protection log
Input transaction file

Output transaction file
Extract file

Primary output file
ADARUN parameters
ADACDC parameters
ADARUN messages
ADACDC messages

36

DD Name
DDASSORN

DDSIIN

CDCTXI

CDCTXO
CDCEXT

CDCOUT
DDCARD
DDKARTE
DDPRINT
DDDRUCK

Storage
disk

tape / disk
tape / disk

tape / disk
tape / disk

tape / disk
reader
reader
printer
printer

Mor e Information

required to read the GCB and FDT
entries

sequential log (not required when
PHASE=2)

not required when RESETTXF is
specified or when PHASE=2

not required when PHASE=2

output or input extract file (not
required when PHASE=BOTH)

not required when PHASE=1
Operations Manual

Utilities Manual

Messages and Codes
Messages and Codes

ADACDC

ADACDC JCL Example (z/OS or OS/390)

Refer to ADACDC in the MV SJOBS dataset for this example.

/ /ADACDC JOB

//*

//* ADACDC : CAPTURE DELTA CHANGES

//*

//CDC EXEC PGM=ADARUN

//STEPLIB DD DISP=SHR, DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*

//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1l <=== ASSO
//DDSIIN DD DSN=EXAMPLE .DByyyyy.PLOG (-3) ,DISP=SHR <== PLOG TAPE
// DD DSN=EXAMPLE .DByyyyy.PLOG (-2) ,DISP=SHR <== PLOG TAPE
// DD DSN=EXAMPLE .DByyyyy.PLOG (-1) ,DISP=SHR <== PLOG TAPE
// DD DSN=EXAMPLE .DByyyyy.PLOG (0) ,DISP=SHR <== PLOG TAPE
//CDCTXI DD DSN=EXAMPLE . input.trans.file, DISP=SHR

//CDCTXO DD DSN=EXAMPLE.output.trans.file, DISP=0OLD

//CDCOUT DD DSN=EXAMPLE .output .primary.file, DISP=0LD

/ /DDDRUCK DD SYSOUT=X

//DDPRINT DD SYSOUT=X

//SYSUDUMP DD SYSOUT=X

/ /DDCARD DD *

ADARUN PROG=ADACDC, MODE=MULTI, SVC=xxx, DEVICE=dddd, DBID=yyyyy
/*

/ /DDKARTE DD *

ADACDC PHASE=BOTH,FILE=1,10,20-30

/*

//

37

Adabas Utilities Manual, Volume 1

zZ/VM or VM/ESA

38

Dataset DD Name Storage More Information
Associator DDASSORn disk required to read the GCB and
FDT entries
Protection log (PLOG) DDSIIN disk / tape sequential log (not required
when PHASE=2)
Input transaction file CDCTXI disk / tape not required when RESETTXF is
specified or when PHASE=2
Output transaction file CDCTXO disk / tape not required when PHASE=2
Extract file CDCEXT disk / tape output or input extract file (not
required when PHASE=BOTH)
Primary output file CDCOUT disk / tape not required when PHASE=1
ADARUN parameters DDCARD disk/terminal/ Operations Manual
reader
ADACDC parameters DDKARTE reader Utilities Manual
ADARUN messages DDPRINT printer Messages and Codes
ADACDC messages DDDRUCK printer Messages and Codes

ADACDC JCL Example (ZZVM or VM/ESA)

/*

/* ADACDC JCL Example (VM/ESA)

/*

DATADEF DDASSOR1,DSN=ADABASVvV.ASSO, VOL=ASSOV1
/*

DATADEF DDSIIN,DSN=ADACDC.PLOG,MODE=A
DATADEF CDCTXI,DSN=ADACDC.INNPUT,6 MODE=A
DATADEF CDCTXO,DSN=ADACDC.OUTPUT, MODE=A
DATADEF CDCOUT, DSN=ADACDC.PRIMARY, MODE=A
/*

DATADEF DDPRINT, DSN=ADACDC, DDPRINT, MODE=A
DATADEF DUMP, DUMMY

DATADEF DDDRUCK, DSN=ADACDC.DDDRUCK, MODE=A
/*

DATADEF DDCARD, DSN=RUNCDC.CONTROL, MODE=A
DATADEF DDKARTE, DSN=ADACDC.CONTROL, MODE=A

EXECOS ADARUN

RCODE = RC
EXIT RCODE

Contents of RUNCDC CONTROL Al:

ADARUN PROG=ADACDC, DEVICE=dddd,DB=yyyyy

Contents of ADACDC CONTROL A1:

ADACDC PHASE=BOTH, FILE=1,10,20-30

*/
*/
*/

*/

*/

ADACDC

39

Adabas Utilities Manual, Volume 1

VSE/ESA
File Symbolic Storage Logical Unit More Information
Name
Associator ASSORnN disk * required to read the
GCB and FDT entries
Protection log SIIN tape SYS010 sequential log (not re-
disk * qui red when PHASEZZ)
Input transaction CDCTXI tape SYS015 not required when
disk * RESETTXF is specified
or when PHASE=2
Output transaction CDCTXO tape SYS016 not required when
disk * PHASE=2
Extract CDCEXT tape SYS017 output or input extract
disk * file (not required when
PHASE=BOTH)
Primary output CDCOUT tape SYS018 not required when
disk * PHASE=1
ADARUN parameters — reader SYSRDR Operations Manual
CARD tape SY S000
CARD disk *
ADACDC parameters — reader SYSIPT Utilities Manual
ADARUN messages — printer SYSLST Messages and Codes
ADACDC messages — printer SYS009 Messages and Codes

* Any programmer logical unit may be used.

40

ADACDC

ADACDC JCS Example (VSE/ESA)
See appendix B for descriptions of the VSE/ESA procedures (PROCS).

Refer to member ADACDC.X for this example.

* $$ JOB JNM=ADACDC, CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D

!/

JOB ADACDC
CAPTURE DELTA CHANGES
EXEC PROC=ADAVVLIB
EXEC PROC=ADAVVFIL
ASSGN SYS010, TAPE
PAUSE MOUNT LOAD INPUT FILE ON TAPE cuu
TLBL SIIN,’EXAMPLE.DByyy.PLOG’
MTC REW,SYS010
DLBL CDCTXI, ' EXAMPLE.INPUT.TRANS.FILE’,,SD
EXTENT SYS015
ASSGN SYS015,DISK,VOL=DISKO1l, SHR
DLBL CDCTXO, ' EXAMPLE.OUTPUT.TRANS.FILE’, ,SD
EXTENT SYS016,,,,sssss,nnnnn
ASSGN SYS016,DISK,VOL=DISKO02
DLBL CDCOUT, ' EXAMPLE.OUTPUT.TRANS.FILE’, ,SD
EXTENT SYS018,,,,sssss,nnnnn
ASSGN SYS018,DISK,VOL=DISKO04
EXEC ADARUN, SIZE=ADARUN

ADARUN DBID=yyyyy,DEVICE=dddd, PROG=ADACDC, SVC=xxx, MODE=MULTI

/*

ADACDC PHASE=BOTH, FILE=1,10,20-30

/*

/&

* $S EOJ

41

42

ADACMP : COMPRESS-DECOMPRESS

Functional Overview

Overview of the COMPRESS Function

The COMPRESS function edits and compresses data records that are to be loaded into the
database:

input data —= ADACMP COMPRESS —= ADALOD LOAD

Input can be data records from

e aphysical sequential dataset (fixed- or variable-length records) supplied by the user; or

e anexisting Adabas file (that is, from ADACMP DECOMPRESS or ADAULD UNLOAD).
The logical structure and characteristics of the input data are described with field definition
statements:

e The FNDEF statement is used to define afield (or group of fields).

e The SUBFN and SUPFN statements are used to define a subfield and a superfield, respectively.

e The COLDE, HYPDE, PHONDE, SUBDE, and SUPDE statements are used to define a
collation descirptor, hyperdescriptor, phonetic descriptor, subdescriptor and superdescriptor,
respectively.

The field definitions provided are used to create the Adabas field definition table (FDT) for the
file. It isalso possible to use an existing Adabas FDT instead of providing field definitions (see
the FDT parameter description on page 61).

If thefieldsin the input record are to be processed in an order that is different from their position
in the input record, and/or if one or more fields are to be skipped, the FORMAT parameter may
be used to indicate the order and location of the input fields.

43

Adabas Utilities Manual, Volume 1

The ADACMP COMPRESS function processes the input data as follows:
Checks numeric data for validity.

Removes trailing blanks from alphanumeric fields.

Removes leading zeros from numeric fields.

Packs numeric unpacked fields.

Fields defined with the fixed (FI) option are not compressed.
A user exit can be used to further edit the input data.

The output of the ADACMP COMPRESS function that is used as input to the ADALOD utility
includes the FDT, compressed records, and on the utility report, the Data Storage space
requirement (for the ADALOC DSSIZE parameter) and the temp and sort dataset size estimates
(TEMPSIZE and SORTSIZE).

The ADACMP COMPRESS function report also indicates
the number of records processed;

the number of records rejected; and

the compression rate percentage.

A dataset containing rejected records is also produced.

Overview of the DECOMPRESS Function

44

The DECOMPRESS function decompresses individual files:
input data — ADACMP DECOMPRESS — decompressed records

Input data can be data records from existing Adabas files
unloaded using the ADAULD (file unload) utility; or
directly (without separate file unloading).

The INFILE parameter of ADACMP DECOMPRESS is used for Adabas files that are directly
decompressed. As part of the decompression process, the target file is unloaded without FDT
information, which can save time when decompressing larger files.

The output of the ADACMP DECOMPRESS function includes ISNs if the ISN parameter is
specified. The DECOMPRESS output may be used as input to a non-Adabas program or as input
to the COMPRESS function, once any desired changes to the data structure or field definitions
for the file are completed.

ADACMP

Input Data Requirements

Input Data Structure

ADACMP input data must be in a sequential dataset/file. Indexed sequential and VSAM input
cannot be used.

The records may be fixed, variable, or of undefined Iength. The maximum input record length
permitted depends on the operating system. The maximum compressed record length is
restricted by the Data Storage block size in use and the maximum compressed record length set
for the file (seethe MAXRECL parameter, ADALOD utility). The input records can bein either
blocked or unblocked format.

The fields in each record must be structured according to the field definition statements
provided (or the specified FDT if an existing Adabas FDT is being used). If auser exit routine
is used, the structure following user exit processing must agree with the field definitions. Any
trailing information contained in an input record for which a corresponding field definition
statement is not present is ignored and is not included in the ADACMP outpui.

Datasets that contain no records are also permitted.
The input dataset can be omitted if the parameter NUMREC=0 is supplied.

Multiple-Value Field Count

The number of values in each record’s multiple-value field must either be specified in the field
definition statement, or the value count must precede the values in each input record. When
specified in the field definition statement, the minimum multiple-value count is 1, and the
maximum is 191. When the minimum count is specified in the input record, zero (0) can be
specified to indicate a multiple-value field containing no values.

If the number of valuesisthe same for each record, this number may be specified with the field
definition statement for the multiple-value field. In this case, the count byte in the input record
must be omitted. If the record definitions are from an existing FDT or if the input datais from
an earlier DECOMPRESS operation, the data already contains the length values; the count must
not be specified in the field definition statements.

The count you specify may be changed by ADACMP if the NU option is specified for the field.
ADACMP suppresses null values, and changes the count field accordingly. Thisistrue whether
you specify the value count before each series of values, or in the field definition statement.
Refer to the section Field/Group Definition/Multiple-Value Field (M U) on page 73.

45

Adabas Utilities Manual, Volume 1

Example 1. Multiple-Value Field Count with Varying Number of Occurrences

46

Field Definition:

ADACMP FNDEF='01,MF,5,A,MU,NU’

Each record contains a different number of values for MF, and the count comes before each

series of occurrences.

Input Record 1
(3 vaues)

Input Record 2
(2 vaues)

Input Record 3
(3 values)

Input Record 4
(no values)

Input Record 5
(1 value)

Before ADACMP

MF count=3
AAAA
BBBB
CCcCC

MF count=2
AAAA
BBBB

MF count=3
AAAA
bbbb

CCcCC

MF count=0

MF count=1
bbbb

After ADACMP

MF count=3
AAAA
BBBB
CCcCC

MF count=2
AAAA
BBBB

MF count=2
AAAA
CCcCC

MF count=0

MF count=0

ADACMP

Example 2: Multiple-Value Field Count with Same Number of Occurrences

Field Definition:
ADACMP FNDEF="01,MF,4,A,MU(3),NU’

Each record contains 3 values for MF, as specified in the field definition statement.

Before ADACMP After ADACMP
Input Record 1 MF count=3
AAAA AAAA
BBBB BBBB
CCcCC CCcCC
Input Record 2 MF count=2
AAAA AAAA
BBBB BBBB
bbbb
Input Record 3 MF count=2
AAAA AAAA
bbbb CCcCC
CCcCC
Input Record 4 MF count=0
bbbb
bbbb
bbbb

Periodic Group Count

Each periodic group must specify a count of field iterations (occurrences) in the record. The
count is specified either within the field definition statement for al records, or as a one-byte
binary value before each occurrence group in every record. If the count isin the field definition
statement, the count byte must be omitted from the input records. When specified in the field
definition statement, the minimum count allowed is 1, and the maximum number of periodic
group occurrences allowed is 99 (or 191, if the MAXPE191 parameter is specified). When the
minimum count is specified in the record, the value can be zero (0) for a periodic group with
NO Occurrences.

The occurrence count provided may be modified by ADACMP if all the fields contained in the
periodic group are defined with the NU option. If al the fields within a given occurrence contain
null values and there are no following occurrences that contain non-null values, the occurrence
will be suppressed and the periodic group occurrence count will be adjusted accordingly.

a7

Adabas Utilities Manual, Volume 1

Example 1: Periodic Group Count with Varying Number of Occurrences

Field Definitions:

ADACMP COMPRESS MAXPE191,...
ADACMP FNDEF='01,GA,PE’
ADACMP FNDEF='02,A1,4,A,NU’
ADACMP FNDEF='02,A2,4,A,NU’

The input records contain a variable number of occurrences for GA (up to 191 occurrences are
permitted). The count of occurrences comes before each occurrence group in the input records.

Before ADACMP After ADACMP
Input Record 1 GA count=2 GA count=2

GA (1st occurrence)

A1=AAAA A1=AAAA

A2=BBBB A2=BBBB

GA (2nd occurrence)

Al1=CCCC Al1=CCCC

A2=DDDD A2=DDDD
Input Record 2 GA count=1 GA count=0

GA (1st occurrence)

Al=bbbb suppressed

A2=bbbb suppressed
Input Record 3 GA count=3 GA count=3

GA (1st occurrence)

A1=AAAA A1=AAAA

A2=bbbb A2=suppressed

GA (2nd occurrence)

A1=BBBB A1=BBBB

A2=bbbb A2=suppressed

GA (3rd occurrence)

Al1=CCCC Al1=CCCC

A2=bbbb A2=suppressed
Input Record 4 GA count=0 GA count=0

ADACMP

Example 2: Periodic Group Count with Same Number of Occurrences

Field Definitions:

ADACMP FNDEF='01,GA,PE(3)’
ADACMP FNDEF='02,A1,4,A,NU’
ADACMP FNDEF='02,A2,4,A,NU’

All input records contain 3 occurrences for GA, as specified in the field definition statement.

Input Record 1

Input Record 2

Input Record 3

Note:

Before ADACMP

GA (1st occurrence)
A1=AAAA
A2=bbbb

GA (2nd occurrence)
A1=BBBB
A2=bbbb

GA (3rd occurrence)
Al1=CCCC
A2=bbbb

GA (1st occurrence)
Al=bbbb
A2=bbbb

GA (2nd occurrence)
A1=BBBB
A2=bbbb

GA (3rd occurrence)
Al=bbbb
A2=bbbb

All occurrences contain

null values

After ADACMP
GA count=3

A1=AAAA
A2 suppressed

A1=BBBB
A2 suppressed

Al1=CCCC
A2 suppressed

GA count=2 (seenote)

Al=suppressed
A2=suppressed

A1=BBBB
A2=suppressed

Al=suppressed
A2=suppressed

GA count=0

All occurrences are suppressed

The first occurrence is included in the count since occurrences follow that contain non-null
values. The third occurrence is not included in the count since there are no non-null values in
the occurrences that follow.

49

Adabas Utilities Manual, Volume 1

Example 3: Adding a a Field to a PE-Group

A w0 DR

In the PE named AW, the field AY should be added:

Old FDT New FDT

01 AA,8A,DE,UQ 01 AA,8A,DE,UQ
01 AW,PE 01 AW,PE

02 AX,8,UNU 02 AX,8,UNU

02 AT,8,U,NU 02 AT,8,U,NU
01,AZ,3,A,DE,MU,NU 02 AY,8,U,NU

01,AZ,3,A,DE,MU,NU

Note:
All of the currently existing fields in the PE must be specified.

Determine the maximum occurrence of the PE (for example, aresult of 2).
Decompress the file with the format parameter.
Decompress INFILE=xx,FORMAT="AA ,AX1-2,AT1-2,AZ’

Compress again:

ADACMP COMPRESS FILE=32

ADACMP FORMAT="AA ,AX1-2,AT1-2,AZ’
ADACMP FNDEF='01,AA,8A DE,UQ
ADACMP FNDEF="01,AW,PE(2)’
ADACMP FNDEF="02,AX,8,U,NU’
ADACMP FNDEF="02,AT,8,U,NU’
ADACMP FNDEF="02,AY,8,U,NU’
ADACMP FNDEF='01,AZ,3,A,.DE,MU,NU’

Variable-Length Field Size

Each value of avariable-length field (length parameter not specified in the field definition) must
be preceded by a one-byte binary count indicating the value length (including the length byte
itself).

Example of Variable-Length Field Size

50

Field Definitions:

ADACMP FNDEF='01,AA,5,A,DE’
ADACMP FNDEF='01,VF,0,A’
ADACMP FNDEF='01,VR,0,A’
Input record:

| Field AA | L VFvalue| L VRvalue |

5 bytes]_ L Length of VR value + 1
Length of VF value + 1

ADACMP

51

Adabas Utilities Manual, Volume 1

Processing

Data Verification

ADACMP checks each field defined with format P (packed) or U (unpacked) to ensure that the
field value is numeric and in the correct format. If a value is empty, the null characters must
correspond to the format specified for the field (see the section Representing SQL Null
Characters on page 78).

Alphanumeric (A) blanks (hex ‘40')

Binary (B) binary zeros (hex ‘00’)

Fixed (F) binary zeros (hex ‘00’)

Floating Paint (G) binary zeros (hex ‘00)

Packed (P) decimal packed zeros with sign (hex ‘00’ followed by ‘OF, ‘0OC’, or
‘0D’ in the rightmost, low-order byte)

Unpacked (U) decimal unpacked zeros with sign (hex ‘FO' followed by ‘CO" or

‘DO’ in the rightmost, low-order byte)

Any record that contains invalid data is written to the ADACMP error (DD/FEHL) dataset and
is not written to the compressed dataset.

Data Compression

52

The value for each field is compressed (unless the FI option is specified) as follows:

Trailing blanks are removed for fields defined with A format.

Leading zeros are removed for numeric fields (fields defined with B, F, P or U format).

If the field is defined with U (unpacked) format, the value is converted to packed (P) format.
Trailing zeros in floating-point (G format) fields are removed.

If the field is defined with the NU option and the value is a null value, a one-byte indicator is
stored. Hexadecimal ‘C1’ indicates one empty field follows, ‘C2’ indicates that two empty
fields follow, and so on, up to a maximum of 63 before the indicator byte is repeated. For SQL
null value (NC option field) compression, see page 78.

Empty fields located at the end of the record are not stored, and therefore not compressed.

ADACMP

Example of Data Compression

B BINARY

U UNPACKED

P PACKED

A ALPHANUMERIC

USER DATA (All values are FORMAT:
shown in hexadecimal notation):

B V) P A

l l i i i i i i

0016/FFFFFH00000{00[44444444DCDC44444D{4444444
00271605590050,0000,00000005145000004oooooo,o

;V_J;,_/;,_Aﬂ_;\ g N J

Birthdate Salary Days First Name Last Name Sex Hobby

NN /7

ADABAS COMPRESSION

COMPRESSED
SATA Ghownm |016/00659/0000/G0ODCDCID
3,2,7|5,1,0,5,F4,5,0,H2|5,5,1,4,5|4

hexadecimal):

Figure 3-2: ADACMP Compression

Figure 3-2 shows how the following field definitions and corresponding values would be
processed by ADACMP:

FNDEF='01,ID,4,B,DE’
FNDEF='01,BD,6,U,DE,NU’
FNDEF='01,SA,5,P’
FNDEF='01,DI,2,PNU’
FNDEF='01,FN,9,A ,NU’
FNDEF='01,LN,10,A,NU’
FNDEF='01,SE,1,A,FI
FNDEF='01,HO,7,A,NU’

53

Adabas Utilities Manual, Volume 1

COMPRESS Function Output

Compressed Data Records

The data records that ADACMP has processed, edited, and compressed are written out together
with the file definition information to a sequential dataset with the “variable blocked” record
format. This dataset may be used as input to the ADALOD utility. The output of several
ADACMP executions may also be used as input to ADALOD.

If the output dataset contains no records (no records provided on the input dataset or all records
rejected), the output may still be used as input to the ADALOD utility. In this case, you must
ensure that the amount of Associator space allocated to the file is sufficient since an accurate
estimate cannot be made by the ADALOD utility without a representative sample of input
record values (see the ADALQOD utility for additional information).

Re ected Data Records

54

Any records rejected during ADACMP editing are written to the DD/FEHL error dataset. The
records are output in variable blocked format and have the following structure:
Bytes Description

0-1 Record length in binary format

2-3 Set to zero (X*0000')

4-5 Field name as stored in FDT

67 Offset from beginning of input record to error value

8-11 Input record sequence number (the first input record is “1")

12 PE index (if applicable)

13 Adabas response code (in hexadecimal)*

14-15 (reserved; set to zeros)

16 DD/EBAND input record

* Additionally the following response codes may occur:

X'E7'(231) Input record too short (COMPRESS)
X'E8'(232) Output record length error (COMPRESS)

Only thefirst incorrect field within arecord is detected and referenced. If there are other errors,
they are not detected until subsequent runs are made.

ADACMP

Example of Rejected Data Records

Field Definitions:

ADACMP FNDEF='01,AA,3,ADFE’
ADACMP FNDEF='01,AB,2,U’
ADACMP FNDEF='01,AC,3,PNU’

Input record values (shown in hexadecimal): ISN = 3849 (decimal)
C1C2C3404000000F
——

1-3 45 6-8

Rejected record as output by ADACMP (shown in hexadecimal):

0018 0000 C1C2 0003 00000F09 00 37 0000 ClCZC3404000OOOF
| WG J WY Oy W X U X U —] S | W S—" .

0-1 2-3 45 6-7 8-11 12 1314-15 16—23

The error dataset may be printed using the standard print utility provided with the operating
system in use at the user installation. OS/390 or z/OS users may use the IEBPTPCH tility.
VSE/ESA users may use the DITTO program. RDW (record descriptor word, bytes 1-4) may
or may not be present, depending on the print utility used.

ADACMP Report

ADACMP calculates the approximate amount of space (in both blocks and cylinders) required
for Data Storage for the compressed records. This information is printed as a matrix which
contains the required space for the different device types requested by the DEVICE parameter
for various Data Storage padding factors between 5 and 30 percent.

The following is an example of ADACMP report output:

PARAMETERS :

ADACMP COMPRESS NUMREC=1000
ADACMP FNDEF='01,AA,8,B,DE’
ADACMP FNDEF='01,BA,6,A,NU’
ADACMP FNDEF=’01,BB,8,P,NU’
ADACMP FNDEF='01,AD,1,A,FI’
ADACMP SUBDE='CA=BA(1,3)’

55

56

Adabas Utilities Manual, Volume 1

COMPRESS PROCESSING STATISTICS:

NUMBER OF RECORDS READ 1,000
NUMBER OF INCORRECT RECORDS 0
NUMBER OF COMPRESSED RECORDS 1,000

RAW DATA 24,000 BYTES
COMPRESSED DATA 16,656 BYTES
COMPRESSION RATE 31.9 %
LARGEST COMPRESSED RECORD 20 BYTES

DATASTORAGE SPACE REQUIREMENTS :

I DEVICE I DPADDING I BLOCKSIZE I NUMBER OF I
I I FACTOR I BYTES I BLOCKS CYLS I
I-----mm--- I-----mm--- I----mmmmm - T-mmmmmmmmmmm e I
I 3380 I I 4,820 I I
I I 5% I 4,578 I 4 101
I I 108 I 4,337 I 4 101
I I 15% I 4,096 I 5 101
I I 205 I 3,856 I 5 101
I I 25% I 3,615 I 5 101
I I 30 I 3,373 I 5 101
I I I I I
I-----mm--- I-----mm--- I----mmmmm - T-mmmmmmmmmmm e I
TEMP SPACE ESTIMATION:

I DEVICE I BLOCKSIZE I NUMBER OF I

I I BYTES I BLOCKS CYLS I
I-----mm--- I----mmmmm - T-mmmmmmmmm e I

I 3380 I 7,476 I 5 11
I-----mm--- I----mmmmm - T-mmmmmmmmm e I

THE LARGEST DESCRIPTOR IS AA, IT WILL OCCUPY 1 TEMP BLOCKS
SORT SPACE ESTIMATION:

I DEVICE I BLOCKSIZE I LWP I NR OF I
I I (BYTES) I (BYTES) I BLOCKS CYLS I
I 3380 I 7476 I 139264 (MINIMUM) I 2 11
I I I 1048576 (DEFAULT) I 2 11
I I I 139264 (OPTIMUM) I 2 11
I-------- I-----mmmm - T-mmmmmmmmm - I--mmmmmmmmmme - I

ADACMP

The compression rate is computed based on the real amount of data used as input to the
compression routine. Fields skipped by aformat element “nX” (used to fill afield with blanks)
are not counted.

DECOM PRESS Function Output

The ADACMP DECOMPRESS function decompresses each record and then stores the record
in a sequential dataset. The records are output in variable-length, blocked format. Each
decompressed record is output either with or without the ISN option according to the format
shown below:

length xx [ISN]data

—where

length is atwo-byte binary length of the data, + 8 (or +4 if the ISN parameter is not

specified).
XX is a two-byte field containing binary zeros.
ISN is afour-byte binary ISN of the record.
data is a decompressed data record.

The fields of the data record are provided in the order in which they appeared in the FDT when
the file was unloaded. The standard length and format are in effect for each field.

If afield value exceeds the standard length, the value will be truncated to the standard length
if thefield is alphanumeric and the TRUNCATE parameter was specified; otherwise, ADACMP
writes the record to the DD/FEHL error dataset (see the following section).

Any count bytes for multiple-value fields or periodic groups contained in the record are included
in the decompressed data output. ADACMP generates a count of 1if the MU field or PE group
is empty. This makes it possible to use the output of the DECOMPRESS operation as the input
to a subsequent COMPRESS operation.

57

Adabas Utilities Manual, Volume 1

Re ected Data Records

58

Data records rejected by the DECOMPRESS operation are written to the DD/FEHL error
dataset. ADACMP rejects arecord whenever a compressed fidd's size is greater than the default
length held in the FDT, unless the TRUNCATE parameter is specified.

The records are output in variable blocked format, and have the following structure:

Bytes Description

0-1 Record length in binary format (see note 2 below)
2-3 Set to zero; that is, X 0000 (see note 2 below)

4-5 Field name as stored in FDT

67 Offset from beginning of input record to error value
8-11 ISN in binary format

12 PE index (if applicable)

13 Adabas response code (in hexadecimal)*

14-15 (reserved; set to zeros)

16 DD/EBAND input record

* Additionally the following response codes may occur:

X'E7'(231) Input record too short (DECOMPRESS)
X'E8'(232) Output record length error (DECOMPRESS)

Notes:
Only the first incorrect field within a record is detected and referenced in DD/FEHL. Other
errors within the record are not detected or recorded.

Bytes 0—1 and 23 are not visible when the output record is viewed from an editor. However, the
bytes are provided when the record is accessed from an application program.

ADACMP

Restart Considerations

ADACMP has no restart capability. An interrupted ADACMP execution must be reexecuted
from the beginning.

User Exit 6

A user-written routine called user exit 6 can be used for editing during ADACMP COMPRESS
processing. The routine may be written in Assembler or COBOL. It must be assembled or
compiled and then linked into the Adabas load library (or any library concatenated with it).

User exit 6 isinvoked by specifying
ADARUN UEX6=program
—where “program” is the routine name in the load library.

See the Adabas DBA Reference Manual, chapter User Exits for specific information about the
user exit 6 structure and parameters.

59

Adabas Utilities Manual, Volume 1

COMPRESS : Create an Adabas File

60

ADACMP COMPRESS

[CODE=cipher-code]
[DEVICE={ device-type-list | ADARUN-device }]
[FACODE=file-alpha-EBCDIC-key]
[FDT=file-number]
[FILE= { file-number|0 }]
[FWCODE-=file-wide-key]
[FUWCODE={wide-key | UWCODE-definition }]
[FORMAT=format]
[MAXPE191]
[NOUSERABEND]
[NUMREC=number-of-records]
[PASSWORD="password’]
[RECFM={ F|FB|V|VB|U }]
[LLRECL=record-length]
[{ USERISN | MINISM={ start-isn|1 } }]
[UACODE=userdata-alpha-key]
[UwCODE={userdata-wide-key | FWCODE-definition }]
[UARC={userdata-architecture-key |2}]
... FIELD DEFINITION STATEMENTS
FNDEF="field-definition’
[COLDE="collation-descriptor-definition’]
[HYPDE="hyperdescriptor-definition’]
[PHONDE="phoneticdescriptor-definition’]
[SUBDE="subdescriptor-definition’]
[SUBFN="subfield-definition’]
[SUPDE="superdescriptor-definition’]
[SUPFN="superfield-definition’]

ADACMP

Optional Parametersand Subparameters
CODE : Cipher Code

If the dataiis to be loaded into the database in ciphered form, the cipher code must be specified
with this parameter. See the Adabas Security Manual for additional information on the use of
ciphering.

DEVICE : Device Type

ADACMP calculates and displays a report of this run’s space requirements for each specified
device type. If DEVICE= is not specified, the default is the ADARUN device type.

FACODE : Alphanumeric Field Encoding

FACODE must be specified if you want to define UES file encoding for alphanumeric fieldsin
the file. The alphanumeric encoding must belong to the EBCDIC encoding family; that is, the
space character is X'40'.

FDT : Use Existing Adabas Field Definition Table

An existing Adabas FDT isto be used. The FDT may be that of an existing file or afile that has
been deleted with the KEEPFDT option of the ADADBS tility.

The input data must be consistent with the structure as defined in the specified FDT, unless the
FORMAT parameter is used. When the FDT defines multiple-value fields or periodic groups,
length values must be defined or aready included in the FDT; refer to the sections
Multiple-Value Field Count on page 45 and Periodic Group Field Count on page 47.

If the FDT parameter is used, any field definitions specified will be ignored.

FILE : File Number

If the FDT contains a hyperdescriptor, this parameter must be specified. The specified file
number becomes input for the related hyperexit. For more information about hyperexits, refer
to the Adabas DBA Reference Manual.

User exit 6 is aways supplied with this file number. If FILE is not specified, avalue of zero is
assumed.

61

Adabas Utilities Manual, Volume 1

FORMAT : Input Record Format Definition

Use this parameter to provide aformat definition that indicates the location, format, and length
of fieldsin the input record. The format provided must follow the rules for format buffer entries
for update commands as described in the Adabas Command Reference Manual.

Conversion rules are those described for Adabas update commands in the Adabas Command
Reference Manual. For conversion of SQL null (NC option) field values, see page 79. If afield
is omitted in the FORMAT parameter, that field is assigned no value.

If the FORMAT parameter is omitted, the input record is processed in the order of the field
definition statements provided or, if the FDT parameter is used, according to an existing Adabas
field definition table.

FUWCODE : Wide-Character Field Default User Encoding

FUWCODE defines the default user encoding for wide-character fields for the file when loaded
in the database. If this parameter is omitted, the encoding is taken from the UWCODE definition
of the database.

FWCODE : Wide-Character Field Encoding

If fields with format W (wide-character) exist in the compressed file, you must specify
FWCODE to define the file encoding for them.

FWCODE also determines the maximum byte length of the wide-character field.

LRECL : Input Record Length (VSE Only)

62

If RECFM=F or RECFM=FB is specified, this parameter must also be specified to provide the
record length (in bytes) of the input data; otherwise, do not specify LRECL.

For z/OS or OS/390, the record length is taken from the input dataset label or DD statement.
For BS2000, the record length is taken from the catalog entry or /FILE statement.

ADACMP

MAXPE191 : Enable Periodic Group Count Up to 191

Periodic groups can have up to 191 occurrences. The limit of 191 is allowed by the nucleus
without further specification; however, to compress records with more than 99 periodic group
occurrences, the parameter MAXPE191 must be specified.

Note:

This option is not compatible with Adabas 5.2 releases; therefore, backward conversion to
Adabas 5.2 is not possible once records with more than 99 PE group occurrences have been
loaded.

MINISN : Starting | SN

For automatic 1SN assignment, MINISN defines the lowest ISN to be used. If MINISN is not
specified, the default is 1. If USERISN is specified, MINISN cannot be specified.

NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

NUMREC : Number of Recordsto Be Processed

Specifies the number of input records to be processed. If this parameter is omitted, all input
records contained on the input dataset are processed.

Software AG recommends using this parameter for the initial ADACMP execution if alarge
number of records are contained on the input dataset. This avoids unneeded processing of all
records when afield definition error or invalid input data results in a large number of rejected
records. This parameter is also useful for creating small files for test purposes.

Setting NUMREC to zero (0) prevents the input dataset from being opened.

PASSWORD : Password for FDT File

If the FDT parameter is specified and the file is password-protected, this parameter must be used
to provide a valid password for that file.

63

Adabas Utilities Manual, Volume 1

RECFM : Input Record Format (VSE Only)

You must specify the input record format with this parameter as follows:

F fixed length, unblocked (requires that you also specify the LRECL parameter)
FB fixed length, blocked (requires that you also specify the LRECL parameter)
\% variable length, unblocked

VB variable length, blocked

U undefined

Under z/OS or OS/390, the record format is taken from the input dataset label or DD statement.

Under BS2000, the record format is taken from the catalog entry or FILE statement.

UACODE : User Encoding for Input Alphanumeric Fields

UARC :

64

UACODE defines the user encoding of the sequential input of alphanumeric fields. If you
specify UACODE, you must also specify FACODE.

Architecturefor Input Uncompressed User Data

The UARC parameter specifies the architecture of the sequential input of the uncompressed user
data. The “userdata-architecture-key” is an integer which is of the sum of the following
numbers:

byte order b=0 high-order byte first
b=1 low-order byte first
encoding family e=0 ASCII encoding family

e=2 EBCDIC encoding family (default)
floating-point format f=0 IBM370 floating-point format

f=4 VAX floating-point format

f=8 |EEE floating-point format

The defaultisARC = b + e+ f = 2; that is, high-order byte first; EBCDIC encoding family; and
IBM370 floating-point format (b=0; e=2; f=0).

User data from an Intel 386 PC provides the example: b=1; e=0; f=8; or ARC=9.

ADACMP

USERISN : User ISN Assignment

The ISN for each record is to be provided by the user. If this parameter is omitted, the ISN for
each record is assigned by Adabas.

If USERISN is specified, the user must provide the ISN to be assigned to each record as a
four-byte binary number immediately preceding each data record. If the MINISN parameter is
specified, USERISN cannot be specified.

The format for fixed or undefined length input records with user-defined ISNs is
userisn/data

The format for variable-length input records with user-defined ISNs is
length/xx/userisn/data

—where

length is a two-byte binary physical record length (Iength of record data, plus 8 bytes).

XX is a two-byte field containing binary zeros.
userisn isafour-byte binary ISN to be assigned to the record.
data is input record data.

ISNs may be assigned in any order, must be unique (for the file), and must not exceed the
MAXISN setting specified for the file (see the ADALOD utility).

ADACMP does not check for unique ISNs or for ISNs that exceed MAXISN. These checks are
performed by the ADALOD utility.

UWCODE : User Encoding for Input Wide-Character Fields

UWCODE defines the user encoding of the sequential input of wide-character fields. If you
specify UWCODE, you must also specify FWCODE.

For user input, al wide-character fields are encoded in the same code page. It is not possible
to select different encodings for different fields in the same ADACMP run.

65

Adabas Utilities Manual, Volume 1

Essential Data Definition Syntax

The field definitions provided as input to ADACMP are used to

provide the length and format of each field contained in the input record. This enables
ADACMP to determine the correct field length and format during editing and compression;

create the field definition table (FDT) for the file. This table is used by Adabas during the
execution of Adabas commands to determine the logical structure and characteristics of any
given field (or group) in thefile.

The following syntax must be followed when entering field definitions. A minimum of one and
a maximum of 926 definitions may be specified.

Field FNDEF="level, name, length, format [{,option}..]"

Group FNDEF='level, name [[PE[(n)]]

Collation descriptor COLDE="number,name [,UQ [,XI]]=parentfield’

Hyperdescriptor HYPDE="number,name,length,format [{,option}...]= {parentfield},...’
Phonetic descriptor ~ PHONDE="name(field)’

Subdescriptor SUBDE="name [,UQ [,XI]] = parentfield (begin,end)’

Subfield SUBFN="name = parentfield (begin,end)’

Superdescriptor SUPDE="name[,UQ [,XI]] = {parentfield (begin,end)} ,...’
Superfield SUPFN="name = {parentfield (begin,end)} ,...’

User comments may be entered to the right of each definition. At least one blank must be present
between a definition and any user comments.

FNDEF : Field/Group Definition

66

This parameter is used to specify an Adabas field (data) definition. The syntax used in
constructing field definition entries is

FNDEF= ‘level, name [, length, format] [{,option}...]

Level number and name are required. Any number of spaces may be inserted between definition
entries.

level

name

ADACMP

The level number isaone- or two-digit number in the range 01-07 (the leading zero is optional)
used in conjunction with field grouping. Fields assigned a level number of 02 or greater are
considered to be a part of the immediately preceding group which has been assigned a lower
level number.

The definition of agroup enables reference to a series of fields (may aso be only 1 field) by using
the group name. This provides a convenient and efficient method of referencing a series of
consecutive fields.

Level numbers 01-06 may be used to define agroup. A group may consist of other groups. When
assigning the level numbers for nested groups, no level numbers may be skipped.

FNDEF='01,GA’ group

FNDEF="02,A1,..” elementary or multiple-value field
FNDEF="02,A2,.. elementary or multiple-value field
FNDEF='01,GB’ group

FNDEF="02,B1,... elementary or multiple-value field
FNDEF="02,GC’ group (nested)

FNDEF="03,C1,... elementary or multiple-value field
FNDEF='03,C2,... elementary or multiple-value field

Fields A1 and A2 arein group GA. Field B1 and group GC (consisting of fields C1 and C2) are
in group GB.

The name to be assigned to the field (or group).

Names must be unique within afile. The name must be two characters long: the first character
must be alphabetic; the second character can be either aphabetic or numeric. No special
characters are permitted.

The values EO-E9 are reserved as edit masks and may not be used.

Valid Names Invalid Names

AA A (not two characters)

B4 E3 (edit mask)

S3 F* (special character)

WM 6M (first character not alphabetic)

67

length

68

Adabas Utilities Manual, Volume 1

The length of the field (expressed in bytes). The length value is used to
indicate to ADACMP the length of the field as it appears in each input record; and
define the standard (default) length to be used by Adabas during command processing.

The standard length specified is entered in the FDT and is used when the field is read/updated
unless the user specifies a length override.

The maximum field lengths that may be specified depend on the “format” value:

Format Maximum Length

Alphanumeric (A) 253 bytes

Binary (B) 126 bytes

Fixed Point (F) 4 bytes (always exactly 2 or 4 bytes)
Floating Paint (G) 8 bytes (always exactly 4 or 8 bytes)
Packed Decimal (P) 15 bytes

Unpacked Decimal (U) 29 bytes

Wide-character (W) 253 bytes*

* Depending on the FWCODE attribute value, the maximum byte length of the W field may be

less than 253. For example, if the default value of FWCODE is used (that is, Unicode), the
maximum length is 252 (2 bytes per character).

Standard length may not be specified with a group name.

Standard length does not limit the size of any given field value unless the FI option is used —
see page 71. A read or update command may override the standard field length, up to the
maximum length permitted for that format.

If standard length is zero for a field, the field is assumed to be a variable-length field.
Variable-length fields have no standard (default) length. A length override for fixed-point (F)
fields can specify alength of two or four bytes only; for floating-point (G) fields, the override
can specify four or eight bytes only.

If avariable-length field is referenced without a length override during an Adabas command,
the value in the field will be returned preceded by a one-byte binary length field (including the
length byte itself). Thislength value must be specified when the field is updated, and aso in the
input records that are to be processed by ADACMP. If the field is defined with the long alpha
(LA) option, the value is preceded by a two-byte binary length field (including the two length
bytes).

format

ADACMP

The standard format of the field (expressed as a one-character code):

Alphanumeric (left-justified)

Binary (right-justified, unsigned/positive)

Fixed point (right-justified, signed, two’'s complement notation)
Floating point (normalized form, signed)

Packed decimal (right-justified, signed)

Unpacked decimal (right-justified, signed)

Wide character (left-justified)

SCTOT®m>

The standard format is used to
indicate to ADACMP the format of the field as it appears in each input record; and

define the standard (default) format to be used by Adabas during command processing. The
standard format specified is entered in the FDT and is used when the field is read/updated unless
the user specifies a format override.

Standard format must be specified for afield. It may not be specified with a group name. When
the group is read (written), the fields within the group are always returned (must be provided)
according to the standard format of each individual field. The format specified determines the
type of compression to be performed on the field.

A fixed-point field is either two or four bytes long. A positive value is in normal form, and a
negative value in two’'s complement form.

A field defined with floating-point format may be either four bytes (single precision) or eight
bytes (double precision) long. Conversion of a value of a field defined as floating point to
another format is supported.

If abinary field is to be defined as a descriptor, and the field may contain both positive and
negative numbers, “F’ format should be used instead of “B” format because “B” format assumes
that all values are unsigned (positive).

Like an aphanumeric field, a wide-character field may be a standard length in bytes defined
inthe FDT, or variable length. Any non-variable format override for awide-character field must
be compatible with the user encoding; for example, a user encoding in Unicode requires an even
length. Format conversion from numbers (U, P, B, F, G) to wide-character format is not allowed.

69

Adabas Utilities Manual, Volume 1

Data Definition Field/Group Options

Options are specified by the two-character codes. These codes may be specified in any order,
separated by a comma.

Code Option Page

DE Fieldisto be adescriptor (key). 70

FI Field is to have a fixed storage length; values are stored without an internal 71
length byte, are not compressed, and cannot be longer than the defined field

length.

LA ThisA or W format variable-length field may contain a value up to 16,381 72
bytes long.

MU Field may contain up to 191 values in a single record. 73

NC Field may contain a null value that satisfies the SQL interpretation of afield 79
having no value; that is, the field’s value is not defined (not counted).

NU Null values occurring in the field are to be suppressed. 75
NV ThisA or W format field is to be processed in the record buffer without be- 76
ing converted.

PE Group field is to be followed by a periodic group definition that may occur 76
up to 191 times in a given record.

NN Field defined with NC option must always have a value defined; it cannot 81
contain an SQL null (not null).

UQ Field isto be aunique descriptor; that is, for each record in the file, the 77
descriptor must have a different value.

Xl For this field, the index (occurrence) number is excluded from the UQ 77

option set for a PE.

DE : Descriptor
DE indicates that the field is to be a descriptor (key). Entries will be made in the Associator
inverted list for the field, enabling the field to be used in a search expression, as a sort key in
a FIND command, to control logical sequentia reading, or as the basis for file coupling.

The descriptor option should be used judiciously, particularly if thefileislarge and the field that
is being considered as a descriptor is updated frequently.

70

ADACMP

Although the definition of a descriptor field is independent of the record structure, note that if
adescriptor field is not ordered first in arecord and logically falls past the end of the physical
record, the inverted list entry for that record is not generated for performance reasons. To
generate the inverted list entry in this case, it is necessary to unload short, decompress, and
reload the file; or use an application program to reorder the field first for each record of thefile.

Fl : Fixed Storage

FI indicates that the field is to have a fixed storage length. Valuesin the field are stored without
an internal length byte, are not compressed, and cannot be longer than the defined field length.

The FI option is recommended for fields with a length of one or two bytes that have a low
probability of containing anull value (personnel number, gender, etc.) and for fields containing
values that cannot be compressed.

The FI option is not recommended for multiple-value fields, or for fields within a periodic
group. Any null values for such fields are not suppressed (or compressed), which can waste disk
storage space and increase processing time.

The FI option cannot be specified for

e U-format fields;

¢ NC, NN, or NU option fields;

e variable-length fields defined with a length of zero (0) in the FNDEF statement;

e adescriptor within a periodic (PE) group.
A field defined with the FI option cannot be updated with a value that exceeds the standard
length of the field.

Example of FlI usage:

Definition User Data Internal Representation
Without FI Option FNDEF='01,AA,3,P 33104C 0433104F (4 bytes)
00003C 023F (2 bytes)
With FI Option FNDEF="'01,AA,3,PFI’ 33104C 33104F (3 bytes)

00003C 00003F (3 bytes)

71

Adabas Utilities Manual, Volume 1

LA : Long Alpha Option

72

The LA (long alphanumeric) option can be specified for variable-length al phanumeric and wide
format fields; i.e., A or W format fields having alength of zero in the field definition (FNDEF).
With the LA option, such afield can contain a value up to 16,381 bytes long.

An alpha or wide field with the LA option is compressed in the same way as an apha or wide
field without the option. The maximum length that a field with LA option can actually haveis
restricted by the block size where the compressed record is stored.

When afield with LA option is updated or read, its value is either specified or returned in the
record buffer, preceded by a two-byte length value that is inclusive (field length, plus two).

A field with LA option

can also have the NU, NC/NN, or MU option;
can be a member of a PE group;

cannot have the FI option;

cannot be a descriptor field;

cannot be a parent of a sub-/superfield, sub-/superdescriptor, hyperdescriptor, or phonetic
descriptor; and

cannot be specified in the search buffer, or response code 61 occurs.

For more information, see the Adabas Command Reference Manual section Specifying a Field
with LA (Long Alpha) Option in the chapter 2 discussion of the record buffer.

Example of LA usage:

Definition User Data Internal Representation
Without LA FNDEF="01,BA,0,A’ X'06',C'HELLO' X’06C8C5D3D3D6’
Option (1-byte length)

With LA FNDEF='01,BA,0A,.LA’ X'0007',CHELLO X’06C8C5D3D3D6
Option (1-byte length)
X'07D2',C ... X'87D2 ...
(2000 data bytes) ..." (2000 data bytes) ...’

ADACMP

MU : Multiple-Value Field

MU indicates that the field may contain more than one value in a single record. The actual
number of values present in each record may vary from 0 to 191, although at least one value
(even if null) must be present in each record input to ADACMP.

The values are stored according to the other options specified for the field. The first value is
preceded by a count field that indicates the number of values currently present for thefield. The
number of values that are stored is equal to the number of values provided in the ADACMP input
record, plus any values added during later updating of the field, less any values suppressed (this
applies only if the field is defined with the NU option).

If the number of values contained in each record input to ADACMP is constant, the number can
be specified in the MU definition statement in the form MU(n), where “n” equals the number
of values present in each input record. For example:

FNDEF="01,AA,5,A,MU(3)’

—indicates that three values of the multiple-value field AA are present in each input record.
Specifying a value of zero (0) indicates that no values are present for the multiple-value field
in the input record.

If the number of valuesis not constant for all input records, a one-byte binary count field must
precede thefirst value in each input record to indicate the number of values present in that record
(see aso the section Input Data Requirements on page 45).

If the FDT is provided (see the FDT parameter description on page 61), the field count must be
contained as a one-byte binary value in each input record.

If the input records were created using the DECOMPRESS function, all required count fields
are aready contained in the input record. In this case, the count must not be specified in the field
definition statement.

All values provided during input or updating will be compressed (unless the FI option has also
been specified). Care should be taken when using the FI and MU options together since alarge
amount of disk storage may be wasted if alarge number of compressible values are present.

If the NU option is specified with the MU option, null values are both logically and physically
suppressed. The positiona relationship of all values (including null values) is maintained in MU
occurrences, unless the occurrences are defined with the NU option. If alarge number of null
values are present in an MU field group, the NU option can reduce the disk storage requirements
for the field but should not be used if the relative positions of the values must be maintained.

73

74

Adabas Utilities Manual, Volume 1

The NC (or NC/NN) option cannot be specified for an MU field.

Example of MU usage with NU:

FNDEF='01,AA,5,A,MU,NU’

The original content where “L” is the length of the “value’ is
after file loading:

| 3 | L value A | L value B | L value C
count AAl AA2 AA3
after update of value B to null value:
| 2 | L value A | L value C |
count AAl AA2
Example of MU usage without NU:
FNDEF='01,AA,5,A,MU’
The original content where “L” is the length of the “value’ is
after file loading:
| 3 | L value A | L value B | L value C
count AAl AA2 AA3
after update of value B to null value:
| 3 | L value A | L value B | L value C
count AAl AA2 AA3

ADACMP

NU : Null Value Suppression
NU suppresses null values occurring in the field.

Normal compression (NU or FI not specified) represents a null value with two bytes (the first
for the value length, and the second for the value itself, in this case a null). Null value
suppression represents an empty field with a one-byte “empty field” indicator. The null value
itself is not stored.

A series of consecutive fields containing null values and specifying the NU option is represented
by a one-byte “empty field” (binary 11nnnnnn) indicator, where “nnnnnn” is the number of the
fields' successive bytes containing null values, up to atotal of 63. For this reason, fields defined
with the NU option should be grouped together whenever possible.

If the NU option is specified for a descriptor, any null values for the descriptor are not stored
in the inverted list. Therefore, a find command in which this descriptor is used and for which
anull value is used as the search value will always result in no records selected, even though
there may be records in Data Storage that contain a null value for the descriptor. If a descriptor
defined with the NU option is used to control a logical sequence in a read logical sequence
(L3/L6) command, those records that contain a null value for the descriptor will not be read.

Descriptors to be used as a basis for file coupling and for which alarge number of null values
exist should be specified with the NU option to reduce the total size of the coupling lists.

The NU option cannot be specified for fields defined with the combined NC/NN options or with
the FI option.

Example of NU usage:

Definition User Data Internal Representation
Normal Compression FNDEF='01,AA,2,B’ 0000 0200 (2 bytes)
With FI Option FNDEF="01,AA,2,B,FI’ 0000 0000 (2 bytes)
With NU Option FNDEF="01,AA,2,B,NU" 0000 C1 (1 byte)*

* Clindicates 1 empty field.

75

Adabas Utilities Manual, Volume 1

NV : No Conversion

PE :

76

The “do not convert” option for alphanumeric (A) or wide-character (W) format fields specifies
that the field is to be processed in the record buffer without being converted.

Fields with the NV option are not converted to or from the user: the field has the characteristics
of the file encoding; that is, the default blank

o for A fields, is dways the EBCDIC blank (X'40'); and
e for W fidds, is aways the blank in the file encoding for W format.

The NV option is used for fields containing data that cannot be converted meaningfully or
should not be converted because the application expects the data exactly as it is stored.

The field length for NV fields is byte-swapped if the user architecture is byte-swapped.

For NV fields, “A” format cannot be converted to “W” format and vice versa.

Periodic Group

PE indicates that a periodic group is to be defined. A periodic group

e may comprise one or more fields. A maximum of 254 elementary fields may be specified.
Descriptors and/or multiple value fields and other groups may be specified, but a periodic group
may not contain another periodic group.

e may occur from 0 to 99 (or 191, if the ADACMP MAXPE191 parameter is specified) times
within agiven record, although at |east one occurrence (even if it contains al null values) must
be present in each ADACMP input record.

e must be defined at the 01 level. All fields in the periodic group must immediately follow and
must be defined at level 02 or higher (in increments of 1 to amaximum of 7). The next O1 level
definition indicates the end of the current periodic group.

¢ may only be specified with agroup name. Length and format parameters may not be specified
with the group name.

Following are two examples of period group definition:

Periodic Group “GA”:

FNDEF='01,GA,PE’

FNDEF='02,A1,6,A,NU’
FNDEF='02,A2,2,B,NU’
FNDEF='02,A3,4,P,NU’

ADACMP

Periodic Group “GB”:

FNDEF='01,GB,PE(3)’
FNDEF='02,B1,4,A,DE,NU’
FNDEF='02,B2,5,A,MU(2),NU’
FNDEF='02,B3’
FNDEF='03,B4,20,A,NU’
FNDEF='03,B5,7,U,NU’

UQ : Unique Descriptor

UQ indicates that the field is to be a unique descriptor. A unique descriptor must contain a
different value for each record in the file. In FNDEF statements, the UQ option can only be
specified if the DE option is a so specified. The UQ option can aso be used in SUBDE, SUPDE,
and HY PDE statements.

The UQ option must be specified if the field is to be used as an ADAM descriptor (see the
ADAMER utility).

ADACMP does not check for unique values; this is done by the ADALOD utility, or by the
ADAINYV utility when executing the INVERT function. If anon-unique value is detected during
file loading, ADALOD terminates with an error message.

Because ADAINV and ADALOD must execute separately for each file in an expanded file
chain, they cannot check for uniqueness across the chain.

However, Adabas does checks the value of unique descriptors across an expanded file chain.
If the value being added (N1/N2) or updated (A1) is not unique across al files within the chain,
response code 198 is returned.

XI : Exclude Instance Number

By default, the occurrence number of fields within periodic groups (PE) defined as unique
descriptors (UQ) isincluded as part of the descriptor value. This means that the same field value
can occur in different periodic group occurrences in different records.

The XI option is used to exclude the occurrence number from the descriptor value for the
purpose of determining the the value's uniqueness. If the XI option is set, any field value can
occur at most once over al occurrences of the PE field in all records.

77

Adabas Utilities Manual, Volume 1

Representing SQL Null Values

78

Adabas includes two data definition options, NC and NN, to provide SQL-compatible null
representation for Software AG’s mainframe Adabas SQL Server (ESQ) and other Structured
Query Language (SQL) database query languages.

The NC and NN options cannot be applied to fields defined
with Adabas null suppression (NU)

with fixed-point data type (FI)

with multiple-values (MU)

within a periodic group (PE)

as group fields

In addition, the NN option can only be specified for afield that specifies the NC option.

A parent field for sub-/superfields or sub-/superdescriptors can specify the NC option. However,
parent fields for a single superfield or descriptor cannot use a mix of NU and NC fields. If any
parent field is NC, no other parent field can be an NU field, and vice versa.

Examples:

A correct ADACMP COMPRESS FNDEF statement for defining the field AA and assigning
the NC and NN option:

ADACMP FNDEF='01,AA,4,A,NN,NC,DE’

Incorrect uses of the NC/NN option that would result in an ADACMP utility ERROR-127:

Incorrect Example Reason

ADACMP FNDEF='01,AA,4,A,NC,NU’ NU and NC options are not compatible
ADACMP FNDEF='01,AB,4,A,NC,FI NC and Fl options are not compatible
ADACMP FNDEF='01,PG,PE’ NC option within a PE group is not allowed
ADACMP FNDEF='02,P1,4,A,NC’

ADACMP

NC : SQL Null Value Option

Without the NC (not counted) option, anull valueis either zero or blank depending on the fidld's
format.

With the NC option, zeros or blanks specified in the record buffer are interpreted according to
the “null indicator” value: either as true zeros or blanks (that is, as “significant” nulls) or as
undefined values (that is, as true SQL or “insignificant” nulls).

If the field defined with the NC option has no value specified in the record buffer, the field value
is always treated as an SQL null.

When interpreted as a true SQL null, the null value satisfies the SQL interpretation of afield
having no value. This means that no field value has been entered; that is, the field's value is not
defined.

The null indicator value is thus responsible for the internal Adabas representation of the null.
For more information, see the following section Null Indicator Value and the section Search
Buffer Syntax in the Adabas Command Reference Manual.

The following rules apply when compressing or decompressing records containing NC fields:

1 If the FORMAT parameter is specified, ADACMP behaves in the same way the nucleus does
for update-type commands. See the Adabas Command Reference Manual.

2. If the FORMAT parameter is not specified
e for compression

Only the value of the NC field is placed in the input record; the two null value indicator bytes
must be omitted. The value is compressed as if the null value indicator bytes were set to zero.
It is not possible to assign a null value to an NC field using this method.

Example:
Field Definition Table (FDT) definition: FNDEF="01,AA,4,A,NC’
Input record contents: MIKE

79

Adabas Utilities Manual, Volume 1

for decompression

If the value of an NC field isnot significant, the record is written to DDFEHL (or FEHL) with
response code 55.

If the value of an NC field is significant, the value is decompressed as usual. There are no null
indicator bytes.

Example:
Field Definition Table (FDT) definition: FNDEF="01,AA,4,A,NC’
Output record contents: MIKE

Null Indicator Value

80

The null indicator value is always two bytes long and has fixed-point format, regardless of the
data format. It is specified in the record buffer when a field value is added or changed; it is
returned in the record buffer when the field value is read.

For an update (Ax) or add (Nx) command, the null indicator value must be set in the record buffer
position that corresponds to the field’s designation in the format buffer. The setting must be one
of the following:

Hex Value Indicatesthat . ..

FFFF the field’s value is set to “undefined”, an insignificant null; the differences
between no value, binary zeros, or blanks for the field in the record buffer are
ignored; al are interpreted equally as “no value”.

0000 no value, binary zeros, or blanks for the field in the record buffer are inter-
preted as significant null values.

ADACMP

For aread (Lx) or find with read (Sx with format buffer entry) command, your program must
examine the null indicator value (if any) returned in the record buffer position corresponding
to thefield’s position in the format buffer. The null indicator valueis one of the following values,
indicating the meaning of the actual value that the selected field contains:

Hex Value Indicatesthat . ..

FFFF a zero or blank in the field is not significant.
0000 azero or blank in the field is a significant value; that is, a true zero or blank.
XXXX the field is truncated. The null indicator value contains the length (xxxx) of

the entire value as stored in the database record.

Example:
The field definition of anull represented in atwo-byte Adabas binary field AA defined with the
NC option is
01,AA,2,B,NC

Null Indicator Value Adabas Internal
For a... (Record Buffer) Data Representation
non-zero value 0 (binary value is significant) 0005 0205
blank 0 (binary null is significant) 0000 (zero) 0200
null FFFF (binary null is not significant) (not relevant) C1

NN : SQL Not Null Option

The NN (“not null” or “null value not allowed”) option may only be specified when the NC
option is also specified for a datafield. The NN option indicates that an NC field must always
have a value (including zero or blank) defined; it cannot contain “no value’.

The NN option ensuresthat the field will not be left undefined when arecord is added or updated;
a significant value must always be set in the field. Otherwise, Adabas returns a response code
52.

81

82

Adabas Utilities Manual, Volume 1

The following example shows how an insignificant null would be handled in atwo-byte Adabas
alphanumeric field AA when defined with and without the NN option:

Example:

Aninsignificant null handled in a two-byte Adabas alphanumeric field AA when defined with
and without the NN option is as following:

Adabas Internal
Option Field Definition Null Indicator Value Representation
With NN 01,AA,2,ANCNN FFFF (insignificant null) none; response code 52
occurs
Without NN 01,AA,2,A,NC FFFF (insignificant null) C1

ADACMP

Optional Field Definition Statements
COLDE : Collation Descriptor Definition

The collation descriptor option enables descriptor values to be sorted (collated) based on a
user-supplied algorithm.

The values are based on algorithms coded in specia collation descriptor user exits (CDX01
through CDX08). Each collation descriptor must be assigned to a user exit, and asingle user exit
may handle multiple collation descriptors.

Example:

Collation descriptor Y 1,File=10
Collation descriptor Y2,File=20 } — Collation descriptor user exit 1 (CDX01)
Collation descriptor Y 3,File=30
Collation descriptor Y5,File=9 — Collation descriptor user exit 4 (CDX04)

The exit is called whenever a collation descriptor value is to be sorted by the Adabas nucleus
or by the ADACMP tility.

Input parameters supplied to the user exit are described in the DBA Reference Manual chapter
User Exits. They include

address and length of the input value
address and length of the output buffer
the address of the length of the returned output string

The user exit sets the length of the returned output string.
See the ADARUN parameter CDXnn in the Adabas Operations Manual for more information.

General Noteson Collation Descriptors

A collation descriptor can be defined for an alphanumeric (A) or wide alphanumeric (W) parent
field. The format, length, and options (except UQ and X1) are taken from the parent field defined
in the COLDE parameter. The unique descriptor (UQ) and exclude index (XI) options are
separately defined for the collation descriptor itself.

A search using a collation descriptor value is performed in the same manner as for standard
descriptors.

83

Adabas Utilities Manual, Volume 1

Collation

84

The user isresponsible for creating correct collation descriptor values. Thereis no standard way
to check the values of a collation descriptor for completeness against the Data Storage. The
maintenance utility ADAICK only checks the structure of an index, not the contents. The user
must set the rules for each value definition and check the value for correctness.

If a file contains more than one collation descriptor, the assigned exits are called in the
alphabetical order of the collation descriptor names.

Descriptor Syntax
A collation descriptor is defined using the following syntax:

COLDE='number, name, [,UQ [,XI]] = parent-field’

—where

number is the user exit number to be assigned to the collation descriptor. The Adabas
nucleus uses this number to determine the collation descriptor user exit to be
called.

name is the name to be used for the collation descriptor. The naming conventions
for collation descriptors are identical to those for Adabas field names.

uQ indicates that the unique descriptor option is to be assigned to the collation
descriptor.

Xl indicates that the uniqueness of the collation descriptor is to be determined

with the index (occurrence) number excluded.

parent-field isthe name of an elementary A or W field. A collation descriptor can have
one parent field. The field name and address is passed to the user exit.

MU, NU, and PE options are taken from the parent field and are implicitly set in the collation
descriptor.

If aparent field with the NU option is specified, no entries are made in the collation descriptor’s
inverted list for those records containing a null value for the field. Thisistrue regardless of the
presence or absence of values for other collation descriptor elements.

If a parent field is not initialized and logically fals past the end of the physical record, the
inverted list entry for that record is not generated, for performance reasons. To generate the
inverted list entry in this case, it is necessary to unload short, decompress, and reload the file;
or use an application program to initialize the field for each record of the file.

ADACMP

Collation Descriptor Definition Example:
Field definition:
FNDEF='01,LN,20,A,DE,NU’ Last-Name
Collation descriptor definition:

COLDE="1,Y2=LN"’

e Collation descriptor user exit 1 (CDXO01) is assigned to this collation descriptor, and the name
isY2.

¢ The collation descriptor length and format are taken from the parentfield: 20 and alphanumeric,
respectively. The collation descriptor isamultiple value (MU) field with null suppression (NU).

e The values for the collation descriptor are to be derived from the parentfield LN.

HYPDE : Hyperdescriptor Definition

The hyperdescriptor option enables descriptor values to be generated, based on a user-supplied
algorithm.

The values are based on algorithms coded in special hyperdescriptor user exits (HEXO01 through
HEX31). Each hyperdescriptor must be assigned to a user exit, and asingle user exit may handle
multiple hyperdescriptors.

Example:

Hyperdescriptor H1,File=20

Hyperdescriptor H1,File=30 } — Hyperdescriptor user exit 4 (HEX4)
Hyperdescriptor Y7,File=30

Hyperdescriptor FA,File=9 — Hyperdescriptor user exit 9 (HEX9)

The exit is called whenever a hyperdescriptor value is to be generated by the Adabas nucleus
or by the ADACMP tility.

85

Adabas Utilities Manual, Volume 1

Input parameters supplied to the user exit are
hyperdescriptor name
file number

addresses of fields taken from the Data Storage record, together with field name and PE index
(if applicable). These addresses point to the compressed values of the fields. The names of these
fields must be defined using the HY PDE parameter of ADACMP or ADAINV.

The user exit must return the descriptor value(s) (DVT) in compressed format. No value, or one
or more values may be returned depending on the options (PE, MU) assigned to the
hyperdescriptor.

The original ISN assigned to the input value(s) may be changed.

See the Adabas DBA Reference Manual, chapter User EXxits, for more information about the
hyperdescriptor user exit.

General Notes on Hyperdescriptors

The format, the length, and the options of a hyperdescriptor are user-defined. They are not taken
from the parent fields defined in the HY PDE parameter.

A search using a hyperdescriptor value is performed in the same manner as for standard
descriptors.

The user isresponsible for creating correct hyperdescriptor values. Thereis no standard way to
check the values of a hyperdescriptor for completeness against the Data Storage. The
maintenance utility ADAICK only checks the structure of an index, not the contents. The user
must set the rules for each value definition and check the value for correctness.

If ahyperdescriptor is defined as packed or unpacked format, Adabas checks the returned values
for validity. The sign half-byte for packed values can contain A, C, E, F (positive) or B, D
(negative). Adabas convertsthe signto F or D.

If afile contains more than one hyperdescriptor, the assigned exits are called in the al phabetical
order of the hyperdescriptor names.

Hyperdescriptor Syntax

86

A hyperdescriptor is defined using the following syntax:

HYPDE="number, name, length, format [{,option}...] = {parent-field},...’

—where

ADACMP

number is the user exit number to be assigned to the hyperdescriptor. The Adabas
nucleus uses this number to determine the hyperdescriptor user exit to be
called.
name is the name to be used for the hyperdescriptor. The naming conventions for
hyperdescriptors are identical to those for Adabas field names.
length is the default length of the hyperdescriptor.
format is the format of the hyperdescriptor:
Format Maximum L ength
Alphanumeric (A) 253 bytes
Binary (B) 126 bytes
Fixed Point (F) 4 bytes (aways 4 bytes)
Floating Paint (G) 8 bytes (always 4 or 8 bytes)
Packed Decimal (P) 15 bytes
Unpacked Decimal (U) 29 bytes
Note:

Wi de-character (W) format is not valid for a hyperdescriptor.
option is an option to be assigned to the hyperdescriptor.

The following options may be used together with a hyperdescriptor:

MU multiple-value field

NU null-value suppression

PE field of aperiodic group

UQ unique descriptor

parent-field is the name of an elementary field. A hyperdescriptor can have 1-20 parent
fields. The field names and addresses are passed to the user exit.

Note:
A hyperdescriptor parent-field may not have W (wide-character) format.

If aparent field with the NU option is specified, no entries are made in the hyperdescriptor’s
inverted list for those records containing a null value for the field. Thisistrue regardless of the
presence or absence of values for other hyperdescriptor elements.

87

Adabas Utilities Manual, Volume 1

If a parent field is not initialized and logically fals past the end of the physical record, the
inverted list entry for that record is not generated, for performance reasons. To generate the
inverted list entry in this case, it is necessary to unload short, decompress, and reload the file;
or use an application program to initialize the field for each record of the file.

Hyperdescriptor Definition Example:
Field definitions:

FNDEF='01,LN,20,A,DE, NU’ Last-Name
FNDEF='01,FN,20,A,MU, NU’ First-Name
FNDEF='01, 1D, 4,B,NU’ Identification
FNDEF='01,AG,3,U’ Age
FNDEF='01,AD, PE’ Address
FNDEF='02,CI,20,A,NU’ City
FNDEF='02,ST,20,A,NU’ Street
FNDEF='01,FA, PE’ Relatives
FNDEF='02,NR,20,A,NU’ R-Last-Name
FNDEF='02,FR,20,A,MU, NU’ R-First-Name

Hyperdescriptor definition:

HYPDE='2,HN, 60,A,MU,NU=LN, FN, FR’

Hyperdescriptor user exit 2 is assigned to this hyperdescriptor, and the name is HN.

The hyperdescriptor length is 60, the format is a phanumeric, and is a multiple-value (MU) field
with null suppression (NU).

The values for the hyperdescriptor are to be derived from fields LN, FN and FR.

The ADACMP HY PDE= statement may be continued on another line, as shown in the following
example. To do so, first specify a minus (—) after a whole argument and before the closing
apostrophe on the first line. Then enter the remaining positional arguments, beginning after the
statement name (ADACMP) enclosed in apostrophes on the following line:

ADACMP HYPDE='1,HY,20,A=AA,BB,CC, -’
ADACMP 'DD, EE, FF’

ADACMP

PHONDE : Phonetic Descriptor

The use of a phonetic descriptor in a FIND command resultsin the return of all the records that
contain similar phonetic values. The phonetic value of adescriptor is based on the first 20 bytes
of the field value. Only alphabetic values are considered; numeric values, specia characters,
and blanks are ignored. Lower- and uppercase a phanumeric characters are internally identical.

A phonetic descriptor is defined using the following syntax:

PHONDE="name (field)’

—where

name is the name to be used for the phonetic descriptor. The naming conventions for
phonetic descriptors are identical to those for Adabas field names.

field is the name of the field to be phoneticized.

The field must be
e an elementary or a multiple value field; and

e defined with alphanumeric format.

The field can be a descriptor.

The field cannot be
e asubdescriptor, superdescriptor, or hyperdescriptor;
e contained within a periodic group;
e used as the source field for more than one phonetic descriptor.
e format W (wide-character)
If the field is defined with the NU option, no entries are made in the phonetic descriptor’s

inverted list for those records that contain a null value (within the byte positions specified) for
the field. The format is the same as for the field.

If the field is not initialized and logically falls past the end of the physical record, the inverted
list entry for that record is not generated for performance reasons. To generate the inverted list
entry in this case, it is necessary to unload short, decompress, and reload the file; or use an
application program to initialize the field for each record of the file.

89

Adabas Utilities Manual, Volume 1

Phonetic Descriptor Definition Example:
Field definition:
FNDEF='01,AA,20,A,DE,NU’

Phonetic definition:

PHONDE="'PA (AA) '

SUBDE : Subdescriptor Definition

A subdescriptor is a descriptor created from a portion of an elementary field. The el ementary
field may or may not be a descriptor itself. A subdescriptor can also be used as a subfield; that
is, it can be specified in the format buffer to control the record’s output format.

A subdescriptor definition is entered using the following syntax:

SUBDE="name [,UQ [,XI]]=parent-field (begin, end)’

—where

name is the subdescriptor name. The naming conventions for a subdescriptor are
identical to those for Adabas field names.

uQ indicates that the subdescriptor is to be defined as unique (see the definition
of option UQ on page 77).

Xl indicates that the uniqueness of the subdescriptor is to be determined with

the index (occurrence) number excluded.
parent-field is the name of the field from which the subdescriptor is to be derived.

begin* is the relative byte position within the parent field where the subdescriptor
definition is to begin.
end* is the relative byte position within the parent field where the subdescriptor

definition is to end.

* Counting is from left to right beginning with 1 for alphanumeric or wide-character fields, and
fromright to left beginning with 1 for numeric or binary fields. If the parent field is defined with
P format, the sign of the resulting subdescriptor value is taken from the 4 low-order bits of the
low-order byte (that is, byte 1).

90

ADACMP

A parent field of a subdescriptor can be

a descriptor

an elementary field

a multiple-value field (but not a particular occurrence of a multiple-value field)

contained within a periodic group (but not a particular occurrence of a periodic group)

A parent field or a subdescriptor cannot be

a sub/super field, subdescriptor, superdescriptor, or phonetic descriptor

format G (floating point)

If the parent field is defined with the NU option, no entries are made in the subdescriptor’s

inverted list for those records that contain a null value (within the byte positions specified) for
the field. The format is the same as for the parent field.

If a parent field is not initialized and logically fals past the end of the physical record, the
inverted list entry for that record is not generated for performance reasons. To generate the
inverted list entry in this case, it is necessary to unload short, decompress, and reload the file;
or use an application program to initialize the field for each record of the file.

Subdescriptor Definition Example 1:
Parent-field definition:
FNDEF='01,AR,10,A,NU’
Subdescriptor definition:

SUBDE='SB=AR(1,5) "’

The values for subdescriptor SB are derived from the first five bytes (counting from left to right)
of all the values for the parent field AR. All values are shown in character format.

AR Values SB Values
DAVENPORT DAVEN
FORD FORD
WILSON WILSO

91

Adabas Utilities Manual, Volume 1

Subdescriptor Definition Example 2:
Parent-field definition:
FNDEF='02,PF,6,P’

Subdescriptor definition:

SUBDE='PS=PF (4,6)’

The values for subdescriptor PS are derived from bytes 4 to 6 (counting from right to left) of
all the values for the parent field PF. All values are shown in hexadecimal.

PF Values PS Values
00243182655F 02431F
00000000186F OF (seenote)

78426281448D 0784262D

Note:
If the NU option had been specified for parent field PF, no value would have been created for
PSfor this value.

Subdescriptor Definition Example 3:
Source-field definition:
FNDEF='02,PF,6,P’

Subdescriptor definition:

SUBDE='PT=PF(1,3)"

The values for PT are derived from bytes 1 to 3 (counting from right to left) of all the values
for PF. All values are shown in hexadecimal.

PF Values PT Values
00243182655F 82655F
00000000186F 186F

78426281448D 81448D

ADACMP

SUBFN : Subfield Definition

A subfield
e isaportion of an elementary field that can be read using an Adabas read command,;
e cannot be updated;
e can be changed to a subdescriptor using ADAINV INVERT SUBDE=... .

A subfield definition is entered using the following syntax:
SUBFN="name = parent-field (begin, end)’
—where

name is the subfield name. The naming conventions for a subfield are identical to
those for Adabas field names.

parent-field isthe name of the field from which the subfield is to be derived.

begin* is the relative byte position within the parent field where the subfield defini-
tion is to begin.

end* is the relative byte position within the parent field where the subfield defini-
tionisto end.

* Counting is from left to right beginning with 1 for alphanumeric or wide-character fields, and
fromright to left beginning with 1 for numeric or binary fields. If the parent field is defined with
“P" format, the sign of the resulting subfield value is taken from the 4 low-order bits of the
low-order byte (that is, byte 1).

The parent field for a subfield can be
e amultiple-value field

e within a periodic group

The parent field for a subfield cannot have format “G” (floating point).

Subfield Definition Example:

SUBFN='X1=AA(1,2)"

93

Adabas Utilities Manual, Volume 1

SUPDE : Superdescriptor Definition

94

A superdescriptor is adescriptor created from several fields, portions of fields, or a combination
thereof.

Each sourcefield (or portion of afield) used to define a superdescriptor is called a parent. From
2 to 20 parent fields or field portions may be used to define a superdiscriptor.

A superdescriptor may be defined as a unique descriptor.

A superdescriptor can be used as a superfield; that is, it can be specified in the format buffer to
determine the record's output format.

A superdescriptor description has the following syntax:

SUPDE=‘name [,UQ [,XI]] = {parent-field (begin, end)} ,...

—where

name is the superdescriptor name. The naming conventions for superdescriptors are
identical to those for Adabas names.

uQ indicates that the superdescriptor is to be defined as unique (see the definition
option UQ on page 77).

Xl indicates that the uniqueness of the superdescriptor is to be determined with

the index (occurrence) number excluded.

parent-field isthe name of a parent field from which a superdescriptor element is to be
derived; up to 20 parent fields can be specified.

begin* is the relative byte position within the field where the superdescriptor ele-
ment begins.

end* is the relative byte position within the field where the superdescriptor ele-
ment is to end.

* Counting is from left to right beginning with 1 for fields defined with alphanumeric or

wide-character format, and from right to left beginning with 1 for fields defined with numeric
or binary format. For any parent field except those defined as “ FI”, any begin and end values
within the range permitted for the parent field’s data type are valid.

ADACMP

A parent field of a superdescriptor can be

an elementary field; or

a maximum of one multiple-value field (but not a specific multiple-value field value);
within a periodic group (but not a specific occurrence);

a descriptor.

A parent field of a superdescriptor cannot be

a super-, sub-, or phonetic descriptor;

format G (floating point);

an NC option field if another parent field is an NU option field;
along aphanumeric (LA) field.

If a parent field with the NU option is specified, no entries are made in the superdescriptor’s
inverted list for those records containing a null value for the field. Thisistrue regardless of the
presence or absence of values for other superdescriptor elements.

If a parent field is not initialized and logically fals past the end of the physical record, the
inverted list entry for that record is not generated for performance reasons. To generate the
inverted list entry in this case, it is necessary to unload short, decompress, and reload the file;
or use an application program to initialize the field for each record of the file.

The total length of any superdescriptor value may not exceed 253 bytes (alphanumeric) or 126
bytes (binary).

The superdescriptor format is B (binary) if no element of the superdescriptor is derived from
an A (alphanumeric) or W (wide-character) parent field; if any element of the superdescriptor
is derived from an A or W parent field, the format of the superdescriptor reflects the last
occurring A or W element; for example, if the last occurring A or W element is W, the format
of the superdescriptor is W.

All binary format superdescriptor values are treated as unsigned numbers.

The ADACMP SUPDE= statement may be continued on another line by specifying aminus (-)
after an argument just before the closing apostrophe on the first line. Then enter the remaining
positional arguments enclosed in apostrophes on the following line beginning after the
statement name (ADACMP). For example:

ADACMP SUPDE='SI=AA(10,20),BB(20,21),-'
ADACMP 'CcCc(12,13),DD(14,15)"

95

Adabas Utilities Manual, Volume 1

Superdescriptor Definition Example 1:
Field definitions:

FNDEF='01,LN,20,A,DE, NU’ Last-Name
FNDEF='01,FN,20,A,MU, NU’ First-Name
FNDEF='01, 1D, 4,B,NU’ Identification
FNDEF='01,AG,3,U’ Age
FNDEF='01,AD, PE’ Address
FNDEF='02,CI,20,A,NU’ City
FNDEF='02,ST,20,A,NU’ Street
FNDEF='01,FA, PE’ Relatives
FNDEF='02,NR,20,A,NU’ R-Last-Name
FNDEF='02,FR,20,A,MU, NU’ R-First-Name

Superdescriptor definition:

SUPDE='SD=LN(1,4),ID(3,4),AG(2,3)"

Superdescriptor SD isto be created. The values for the superdescriptor are to be derived from
bytes 1to 4 of field LN (counting from left to right), bytes 3to 4 of field ID (counting from right
to left), and bytes 2 to 3 of field AG (counting from right to left). All values are shown in
hexadecimal.

LN ID AG SD

C6D3C5D4C9D5C7 00862143 FOF4F3 C6D3C5D40086F0F4
D4D6D9D9C9E2 02461866 FOF3F8 D4D6D9D90246F0F3
D7C1D9D2C5D9 00000000 FOF3F6 No valueis stored (because of 1D)
404040404040 00432144 FOFOFO No valueis stored (because of LN)
CicCicicicici 00000144 F1F1F1 C1C1C1C10000F1F1
CicCicicicici 00860000 FOFOFO C1C1C1C10086FOFO

The format for SD is alphanumeric since at least one element is derived from a parent field
defined with aphanumeric format.

ADACMP

Superdescriptor Definition Example 2:
Field definitions:

FNDEF='01,LN,20,A,DE, NU’ Last-Name
FNDEF='01,FN,20,A,MU, NU’ First-Name
FNDEF='01, 1D, 4,B,NU’ Identification
FNDEF='01,AG,3,U’ Age
FNDEF='01,AD, PE’ Address
FNDEF='02,CI,20,A,NU’ City
FNDEF='02,ST,20,A,NU’ Street
FNDEF='01,FA, PE’ Relatives
FNDEF='02,NR,20,A,NU’ R-Last-Name
FNDEF='02,FR,20,A,MU, NU’ R-First-Name

Superdescriptor definition:

SUPDE='SY=LN(1,4) ,FN(1,1)"

Superdescriptor SY is to be created from fields LN and FN (which is a multiple-value field).
All values are shown in character format.

LN FN SY
FLEMING DAVID FLEMD
MORRIS RONALD MORRR
RON MORRR
WILSON JOHN WILS]
SONNY WILSS

The format of SY is aphanumeric since at least one element is derived from a parent field
defined with aphanumeric format.

Superdescriptor Definition Example 3:
Feld definitions:

FNDEF='01, PN, 6,U,NU’

FNDEF='01,NA, 20,A,DE, NU’
FNDEF='01,DP,1,B,FI '

97

98

Adabas Utilities Manual, Volume 1

Superdescriptor definition:
SUPDE=’"SZ=PN(3,6) ,DP(1,1)"
Superdescriptor SZ is to be created. The values for the superdescriptor are to be derived from

bytes 3 to 6 of field PN (counting from right to left), and byte 1 of field DP. All values are shown
in hexadecimal.

PN DP Sz

FOF2F4F6F7F2 04 FOF2F4F604

F8F4FOF3F9F8 00 F8F4FOF300

FOFOFOFOF1F1 06 FOFOFOF006

FOFOFOFOFOF1 00 FOFOFOF000

FOFOFOFOFOFO 00 no value is stored (because of PN)
FOFOFOFOFOFO 01 no value is stored (because of PN)

The format of SZ is binary since no element is derived from a parent field defined with
alphanumeric format. A null value is not stored for the last two values shown because the
superdescriptor option isNU (from the PN field) and the PN field value contains unpacked zeros
(X'FQ"), the null value.

Superdescriptor Definition Example 4:
Field definitions:

FNDEF='01, PF, 4,P,NU’
FNDEF='01, PN, 2, P,NU’

Superdescriptor definition:
SUPDE='SP=PF(3,4) ,PN(1,2)"

Superdescriptor SP is to be created. The values for the superdescriptor are to be derived from
bytes 3 to 4 of field PF (counting from right to left), and bytes 1 to 2 of field PN (counting from
right to left). All values are shown in hexadecimal.

PF PN SP

0002463F 003F 0002003F

0000045F 043F 0000043F

0032464F 000F No value is stored (because of PN)
0038000F 044F 0038044F

ADACMP

The format of SP is binary since no element is derived from a parent field defined with
alphanumeric format.

Superdescriptor Definition Example 5:
Field definitions:

FNDEF='01,AD, PE’
FNDEF='02,CI,4,A,NU’
FNDEF='02,ST,5,A,NU’
Superdescriptor definition:

SUPDE='XY=CI(1,4),ST(1,5)"

Superdescriptor XY isto be created from fields Cl and ST. All values are shown in character

format.

Cl ST XY

(1st occ.) BALT (1st occ.) MAIN BALTMAIN

(2nd occ.) CHI (2nd occ.) SPRUCE CHI SPRUC

(3rd occ.) WASH (3rd occ.) 11TH WASHI11TH

(4th occ.) DENV (4th occ.) bbbbb No value stored (because of ST)

The format of XY isalphanumeric since at least 1 element is derived from a parent field which
is defined with alphanumeric format.

SUPFN : Superfield Definition

A superfield is afield composed of several fields, portions of fields, or combinations thereof,
which may be read using an Adabas read command. A superfield cannot

e be updated;
e comprise fields defined with the NC option if another parent field has the NU option;
e be used as a descriptor.

A superfield can be changed to a superdescriptor using the ADAINV utility function INVERT
SUPDE-=... .

99

100

Adabas Utilities Manual, Volume 1

A superfield is defined using the following syntax:

SUPFN="name = {parent-field (begin, end)},...’

—where

name superfield name. The naming conventions for superfields are identical to
those for Adabas names.

parent-field name of the field from which a superfield element is to be derived.

begin* relative byte position within the field where the superfield element is to
begin.
end* relative byte position within the field where the superfield element is to end.

* Counting is from left to right beginning with 1 for fields defined with alphanumeric or

wide-character format, and from right to left beginning with 1 for fields defined with numeric
or binary format.

A parent field of a superfield can be
a multiple-value field

contained within a periodic group

A parent field of a superfield cannot be format G (floating point).

The total length of any superfield value may not exceed 253 bytes (al phanumeric) or 126 bytes
(binary).

The superfield format is B (binary) if no element of the superfield is derived from an A
(alphanumeric) or W (wide-character) parent field; if any element of the superfield is derived
from an A or W parent field, the format of the superfield reflects the last occurring A or W
element; for example, if the last occurring A or W element is W, the format of the superfield
isW.

Superfield Definition Example:

SUPFN='X2=AA(1,2) ,AB(1,4),AC(1,1)"

ADACMP

ADACMP COMPRESS Examples

Example 1:

ADACMP COMPRESS

ADACMP FNDEF='01,AA,7,A,DE,FI’ Field AA

ADACMP FNDEF='01,AB,15,A,DE, MU, NU" Field AB

ADACMP FNDEF='01,GA’ Group GA

ADACMP FNDEF='02,AC,15,A,NU’ Field AC

ADACMP FNDEF='02,AD,2,P,FI’ Field AD

ADACMP FNDEF='02,AE,5,P,NU’ Field AE

ADACMP FNDEF='02,AF,6,W’ Field AF

ADACMP COLDE='7,Y1=AF’ Collation descriptor Y1
ADACMP SUBDE='BB=AA(1,4)"’ Subdescriptor BB
ADACMP SUPDE='CC=AA(1,4),AD(1,1)" Superdescriptor CC
ADACMP HYPDE='1,DD, 4,A,MU=AB,AC,AD’ Hyperdescriptor DD
ADACMP PHONDE='EE (AA7) ’ Phonetic descriptor EE
ADACMP SUBFN='FF=AA(1,2) " Subfield FF

ADACMP SUPFN='GG=AA(1,4) ,AD(1,1)" Superfield GG

e Field AA isdefined as level 1, 7 bytes aphanumeric, descriptor, fixed storage option.

e Field ABisdefined asleve 1, 15 bytes alphanumeric, descriptor, multiple value field, null value
suppression.

e GAisagroup containing fields AC, AD and AE.

e BB isasubdescriptor (positions 1-4 of field AA).

e CCisasuperdescriptor (positions 1-4 of field AA and position 1 of field AD).

e DD isahyperdescriptor consisting of fields AB, AC and AD. DD is assigned hyperexit 1.
e EE isaphonetic descriptor derived from field AA.

e FFisasubfield (positions 1-2 of field AA).

e GG isasuperfield (positions 1-4 of AA and position 1 of AD).

e Ylisacallation descriptor for AF and is assigned to collation descriptor user exit 7 (CDX07).

101

Adabas Utilities Manual, Volume 1

Example 2:

ADACMP COMPRESS

ADACMP FORMAT='AG,6,U,AF,4X,AA, "’ input record format

ADACMP FORMAT='AB,AC’ continuation of FORMAT statement
ADACMP FNDEF='01,AA,10,A,NU’ field definitions

ADACMP FNDEF='01,AB,7,U,NU’
ADACMP FNDEF='01,AF,5,P,NU’
ADACMP FNDEF='01,AG,12,P,NU,DE’
ADACMP FNDEF='01,AC,3,A,NU,DE’

The input record format is provided explicitly using the FORMAT parameter. ADACMP uses
this format as the basis for processing fields from the input record. The FDT for the file
corresponds to the structure specified in the FNDEF statements.

Example 3:

ADACMP COMPRESS

ADACMP FORMAT='AG,AF,4X,AA,AB,AC’ input record format
ADACMP FDT=8 FDT same as file 8

The input record format is provided explicitly using the FORMAT parameter. The FDT to be
used is the same as that currently defined for Adabas file 8.

Example 4:

ADACMP COMPRESS NUMREC=2000,USERISN

ADACMP FNDEF='01,AA,7,A,DE,FI’ Field 2AA
ADACMP FNDEF='01,AB, 15,A,DE, MU, NU’ Field AB

The number of input records to be processed is limited to 2,000. The ISN for each record isto

be provided by the user.

Example 5:

ADACMP COMPRESS RECFM=FB, LRECL=100

ADACMP FNDEF='01,AA,7,A,DE,FI’ Field 2AA
ADACMP FNDEF='01,AB, 15,A,DE, MU, NU’ Field AB

A VSE input file contains fixed length (blocked) records. The record length is 100 bytes.

102

ADACMP

DECOMPRESS : Decompress Filg(s)

The DECOMPRESS function decompresses data either
e from output unloaded by the ADAULD UNLOAD utility function; or

e directly from asingle compressed Adabas file when the file number is specified with the INFILE
parameter.

When decompressing data directly from the INFILE file, DECOMPRESS first performs an
ADAULD UNLOAD/MODE=SHORT function. This can save time over separate ADAULD
and ADACMP DECOMPRESS operations.

ADACMP DECOMPRESS [CODE=cipher-code]
[FORMAT=output-record-format-definition]
[INFILE=file-number]

[ETID=owner-id]
[LPB={prefetch-buffer-size | based-on-ADARUN-Iu}]
[PASSWORD="password’]
[SORTSEQ={descriptor | ISN | physical-sequence}]
[UTYPE={EXF | EXU}]
[ISN]
[INOUSERABEND]
[NUMREC={number-of-records | all-records}]
[TRUNCATE]
[UACODE=user-alpha-key]
[UWCODE-=user-wide-key]
[UARC-=[architecture-key | 2}]

Optional Parametersand Subparameters
CODE : Cipher Code

If the file to be decompressed is ciphered, the cipher code that was used when the file was

compressed must be specified with this parameter. See the Adabas Security Manual for
additional information on the use of ciphering.

103

Adabas Utilities Manual, Volume 1

ETID : Multiclient File Owner 1D

ETID specifies an owner ID for a multiclient file specified by INFILE. ADACMP
DECOMPRESS sdlectively decompresses only those records in the multiclient file assigned to
the owner 1D specified by ETID. The ETID value must be the same as that assigned to the
records when they were loaded into the multiclient file.

FORMAT : Output Record Format Definition

FORMAT allows decompression to aformat other than that specified by the FDT. It can be used
to change the FDT of an existing file and, in particular, the structure of a periodic (PE) group.

The FORMAT parameter syntax is the same as the format buffer syntax used for read commands
except that text cannot be inserted (text is not compressible/decompressible); see the Adabas
Command Reference Manual for more information.

Note:
The FORMAT parameter does not check whether all related data fields have been processed
during decompression. For example, if a multiple-value (MU) field defined as

01,AA,8,A,MU
—has five occurrences, and the ADACMP DECOMPRESS FORMAT parameter specifies
AAl-4

—then only thefirst four AA field values are decompressed; no indication is given regarding the
fifth field value. This also applies to PE field occurrences and length overrides.

INFILE : Number of Fileto Be Decompressed

The INFILE parameter allows you to decompress a file without first unloading it with the
ADAULD utility. If the INFILE parameter is not specified, the input is read from a sequential
(DD/EBAND) file. With the ETID parameter, INFILE permits selectively decompressing
records from a multiclient file. When decompressing multiclient files, refer to the section
Decompressing Multiclient Files on page 107.

ISN : Include 1SN in Decompressed Output

The 1SN of each record isto be included with each decompressed record output. If this parameter
is omitted, the ISN will not be included with each record.

104

ADACMP

LPB : Prefetch Buffer Size

LPB specifies the size, in bytes, of the internal prefetch buffer for the ADACMP
DECOMPRESS INFILE function. The maximum value is 32,760 bytes. The default is
calculated by Adabas, depending on the ADARUN LU value in effect for the nucleus.

NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

NUMREC : Number of Recordsto Be Processed

NUMREC specifies the number of input records to be processed. If this parameter is omitted,
all input records contained on the input dataset are processed.

Use of NUMREC is recommended for the initial ADACMP execution if a large number of
records are contained on the input dataset. This avoids unneeded processing of all records when
afield definition error or invalid input data causes a large number of rgjected records. NUMREC
is also useful for creating small files for test purposes.

PASSWORD : Password for INFILE

The PASSWORD parameter must specify the correct password if the file is to be decompressed
directly from a password-protected Adabas file.

SORTSEQ : Processing Sequence for INFILE File

SORTSEQ determines the sequence in which the fileis processed. If this parameter is omitted,
the records are processed in physical sequence. SORTSEQ can be specified only when INFILE
is also specified.

If adescriptor is specified, thefileis processed in the logical sequence of the descriptor values.
Do not use a null-suppressed descriptor field, a hyperdescriptor, a phonetic descriptor, a
multiple-value descriptor field, or a descriptor contained in a periodic group.

105

Adabas Utilities Manual, Volume 1

Note:

Even when the descriptor field is not null-suppressed, the record is not represented in the
inverted list if the descriptor field or a field following it has never been initialized (held a value).
Therefore, the record will be dropped when the utility is executed.

If ISN is specified, thefileis processed in ascending 1SN sequence. For the Adabas checkpoint
or security file, only SORTSEQ=ISN is allowed.

TRUNCATE : Truncate Excess Alphanumeric Characters

The TRUNCATE parameter enables truncation of compressed alphanumeric data during
decompression. When TRUNCATE is specified and ADACMP DECOMPRESS operation finds
an alphanumeric field containing more characters than the FDT description allows for the field,
the extra characters are truncated. If TRUNCATE is not specified, alphanumeric records with
extra characters are written to the DD/FEHL dataset. Non-alphanumeric fields cannot be
truncated.

UACODE : Encoding Protocol for Output Alphanumeric Fields

UARC :

106

UACODE defines the encoding of the sequential output of alphanumeric fields. This parameter
allows you to override the user encoding for aphanumeric fields passed in the header of the
compressed sequential input.

Architecture for Output Uncompressed User Data

The UARC parameter specifies the architecture of the sequential output of the uncompressed
user data. This parameter allows you to override the user encoding passed in the header of the
compressed sequentia input.

The ‘userdata-architecture-key’ is an integer which is the sum of the following numbers:

byte order b=0 high-order byte first
b=1 low-order byte first
encoding family e=0 ASCII encoding family

e=2 EBCDIC encoding family (default)
floating-point format f=0 IBM370 floating-point format

f=4 VAX floating-point format

f=8 |EEE floating-point format

ADACMP

The defaultisARC = b + e+ f = 2; that is, high-order byte first; EBCDIC encoding family; and
IBM370 floating-point format (b=0; e=2; f=0).

User data from an Intel 386 PC provides the example: b=1; e=0; f=8; or ARC=9.

UTYPE : User Type
The user type to be in effect when unloading the file specified by INFILE. Allowed values are

EXF no access/update allowed for other users of the file.
EXU accessonly isalowed for other users of the file. EXU is the default.

UWCODE : Encoding Protocol for Output Wide-Character Fields

UWCODE defines the encoding of the sequential output of wide-character fields. This
parameter allows you to override the user encoding for wide-character fields passed in the
header of the compressed sequential input.

Decompressing M ulticlient Files

ADACMP decompresses Adabas data to a sequential user file. The DECOMPRESS function
can decompress records selectively if the INFILE parameter specifies a multiclient file and a
valid ETID value is specified.

The DECOMPRESS function skips the owner ID, if present. The output of a DECOMPRESS
operation on a multiclient file contains neither owner ID nor any ETID information.

If the INFILE parameter specifies a multiclient file for the DECOMPRESS function, you can
use the ETID parameter to limit decompression to records for a specific user only. ADACMP
then reads and decompresses records only for the specified user. If the ETID parameter is not
specified when decompressing a multiclient file, all records in the file are decompressed.

Example:

Only records owned by USER1 from file 20 are decompressed to a sequential output file:

ADACMP DECOMPRESS INFILE=20,ETID=USER1

107

Adabas Utilities Manual, Volume 1

ADACMP DECOM PRESS Examples

Example 1:

The DECOMPRESS function is to be executed. The input dataset to be used is the output of a
previous execution of the ADAULD utility:

ADACMP DECOMPRESS

Example 2:

Adabas file 23 is to be decompressed. The ISN of each record is to be included in the
decompressed output:

ADACMP DECOMPRESS INFILE=23,ISN

JCL/JCS Requirements and Examples

This section describes the job control information required to run ADACMP with BS2000,
0S/390 or zZ/OS, VM/ESA or zZ/VM, and V SE/ESA systems and shows exampl es of each of the
job streams.

Note:

When the recovery log is active, sequential datasets used by the utilities whose runs are logged
on the RLOG must be kept and made available for any recovery operation; for example, the
DD/EBAND input to an ADALOD LOAD operation.

User Exitswith ADACMP
Compression with User Exit

User exit 6 can be used to perform user processing on a record before it is processed by the
ADACMP COMPRESS utility. See the DBA Reference Manual for more information.

108

ADACMP

If user exit 6 is to be used during ADACMP execution, the specified user exit routine must be
loadable at execution time; that is, it must be assembled and linked into the Adabas

e load library (or any library concatenated with it) for BS2000, OS/390, VM/ESA.

e coreimagelibrary or any library contained in the core image library search chain for VSE/ESA.

The ADACMP COMPRESS utility job must specify

ADARUN UEX6=exit-name

—where

exit-name isthe name of a user routine that gets control at the user exit; the name can be
up to 8 characters long.

Collation with User Exit

If a collation user exit is to be used during ADACMP execution, the ADARUN CDXnn
parameter must be specified for the utility run.

Used in conjunction with the universal encoding support (UES), the format of the collation
descriptor user exit parameter is

ADARUN CDXnn=exit-name

—where

nn is the number of the collation descriptor exit, a two-digit decimal integer in the
range 01-08 inclusive.

exit-name isthe name of the user routine that gets control at the collation descriptor exit;
the name can be up to 8 characters long.

Only one program may be specified for each collation descriptor exit. Up to 8 collation
descriptor exits may be specified (in any order). See the DBA Reference Manual for more
information.

109

Adabas Utilities Manual, Volume 1

BS2000
Dataset Link Name Storage More Information
User input data DDEBAND tape/disk
(COMPRESS function)
Compressed data DDEBAND tape/disk Not used if the parame-
(DECOMPRESS function) ter INFILE is used
Compressed data DDAUSBA tape/disk
(COMPRESS function)
Decompressed data DDAUSBA tape/disk
(DECOMPRESS function)
Rejected data DDFEHL tape/disk
ECS encoding objects DDECS0J tape/disk Required for universal

ADARUN parameters SYSDTA/DDCARD

ADACMP parameters and SYSDTA/DDKARTE
data definitions

ADARUN messages SYSOUT/ DDPRINT printer/disk
ADACMP report SYSLST/ DDDRUCK printer/disk

JCL Examples (BS2000)
ADACMP COMPRESS

110

In SDF Format:

/ .ADACMP LOGON

/MODIFY-TEST-OPTIONS DUMP=YES

/REMARK *

/REMARK * A D A C M P COMPRESS
/REMARK *

/DELETE-FILE CMP.AUS

/SET-JOB-STEP

/DELETE-FILE CMP.FEHL

/SET-JOB-STEP

/CREATE-FILE CMP.AUS, PUB (SPACE=(48,48)
/SET-JOB-STEP

/CREATE-FILE CMP.FEHL, PUB (SPACE=(48,48))
/SET-JOB-STEP

encoding support (UES)
Operations Manual
Utilities Manual

Messages and Codes
Messages and Codes

ADACMP

/ASS-SYSLST L.CMP

/ASS-SYSDTA *SYSCMD

/SET-FILE-LINK DDLIB,ADAvrs.MOD

/SET-FILE-LINK DDEBAND,CMP.EIN

/SET-FILE-LINK DDAUSBA, CMP.AUS

/SET-FILE-LINK DDFEHL,CMP.FEHL

/START-PROGRAM *M (ADA.MOD, ADARUN) , PR-MO=ANY

ADARUN PROG=ADACMP, DB=yyyyy, IDTNAME=ADABASS5B

ADACMP COMPRESS NUMREC=1000,FDT=1,USERISN,DEVICE=dddd, eecee
/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/ .ADACMP LOGON

/OPTION MSG=FH,DUMP=YES

/REMARK *

/REMARK * A D A C M P COMPRESS

/REMARK *

/ER CMP.AUS

/STEP

/ER CMP.FEHL

/STEP

/SYSFILE SYSLST=L.CMP

/FILE ADA.MOD,LINK=DDLIB

/FILE CMP.EIN, LINK=DDEBAND

/FILE CMP.AUS, LINK=DDAUSBA, SPACE=(48,48)
/FILE CMP.FEHL, LINK=DDFEHL, SPACE= (48,48)
/EXEC (ADARUN, ADA.MOD)

ADARUN PROG=ADACMP, DB=yyyyy, IDTNAME=ADABASS5B
ADACMP COMPRESS NUMREC=1000,FDT=1,USERISN,DEVICE=dddd, eecee
/LOGOFF NOSPOOL

ADACMP DECOMPRESS
In SDF Format:

/ .ADACMP LOGON
/MODIFY-TEST-OPTIONS DUMP=YES
/REMARK *

/REMARK * A D A C M P DECOMPRESS
/REMARK *

111

112

Adabas Utilities Manual, Volume 1

/DELETE-FILE CMP.AUS

/SET-JOB-STEP

/DELETE-FILE CMP.FEHL

/SET-JOB-STEP

/CREATE-FILE CMP.AUS, PUB (SPACE=(48,48))
/SET-JOB-STEP

/CREATE-FILE CMP.FEHL, PUB (SPACE=(48,48))
/SET-JOB-STEP

/ASS-SYSLST L.DEC

/ASS-SYSDTA *SYSCMD

/SET-FILE-LINK DDLIB,ADAvrs.MOD
/SET-FILE-LINK DDEBAND,CMP.EIN
/SET-FILE-LINK DDAUSBA, CMP.AUS
/SET-FILE-LINK DDFEHL,CMP.FEHL
/START-PROGRAM *M (ADA.MOD, ADARUN) , PR-MO=ANY
ADARUN PROG=ADACMP, DB=yyyyy, IDTNAME=ADABASS5B
ADACMP DECOMPRESS

/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/ .ADACMP LOGON

/OPTION MSG=FH,DUMP=YES

/REMARK *

/REMARK * A D A C M P DECOMPRESS
/REMARK *

/ER CMP.AUS

/STEP

/ER CMP.FEHL

/STEP

/SYSFILE SYSLST=L.CMP.DEC

/FILE ADA.MOD,LINK=DDLIB

/FILE CMP.EIN, LINK=DDEBAND

/FILE CMP.AUS, LINK=DDAUSBA, SPACE=(48,48)
/FILE CMP.FEHL, LINK=DDFEHL, SPACE= (48,48)
/EXEC (ADARUN, ADA.MOD)

ADARUN PROG=ADACMP, DB=yyyyy, IDTNAME=ADABASS5B
ADACMP DECOMPRESS

/LOGOFF NOSPOOL

ADACMP

0S/3900r z/OS

Dataset DD Name Storage More Information

User input data DDEBAND tape/disk

(COMPRESS function)

Compressed data DDEBAND tape/disk Not used if the parameter
(DECOMPRESS function) INFILE is specified
Compressed data DDAUSBA tape/disk

(COMPRESS function)

Decompressed data DDAUSBA tape/disk

(DECOMPRESS function)

Rejected data DDFEHL tape/disk

ECS encoding objects DDECS0J tape/disk Required for universal encoding
support (UES)

ADACMP report DDDRUCK printer
ADARUN messages DDPRINT printer
ADARUN parameters DDCARD reader

ADACMP parameters and DDKARTE reader
data definitions

JCL Examples (OS/390 or z/OS)

In the MV SJOBS dataset, refer to ADACMP for the COMPRESS example and ADACMPD for
the DECOMPRESS example.

ADACMP COMPRESS

/ /ADACMP JOB

//*

//* ADACMP COMPRESS

//* COMPRESS A FILE

//*

//CMP EXEC PGM=ADARUN

//STEPLIB DD DISP=SHR, DSN=ADABAS.Vvrs .LOAD <=== ADABAS LOAD
//*

113

114

Adabas Utilities Manual, Volume 1

/ /DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X

//DDEBAND DD DISP=OLD,DSN=EXAMPLE.DByyyyy.INPUT, UNIT=TAPE,

!/

VOL=SER=TAPEO1

//DDAUSBA DD DISP=(NEW,KEEP) ,DSN=EXAMPLE.DByyyyy.COMP01,UNIT=DISK, <==

// VOL=SER=DISK01,SPACE= (TRK, (200,10) ,RLSE)

/ /DDFEHL DD DISP= (NEW, KEEP) , DSN=EXAMPLE .DByyyyy . FEHL, UNIT=DISK,
// VOL=SER=DISK01, SPACE= (TRK, 1)

/ /DDCARD DD *

ADARUN PROG=ADACMP, MODE=MULTI, SVC=xxx, DEVICE=dddd, DBID=yyyyy

/*

/ /DDKARTE DD *

ADACMP
ADACMP
ADACMP
ADACMP
ADACMP
ADACMP
ADACMP
ADACMP
ADACMP
ADACMP
ADACMP
ADACMP
ADACMP
ADACMP
ADACMP
ADACMP
ADACMP
ADACMP
ADACMP
ADACMP
ADACMP

ADACMP
ADACMP
ADACMP
ADACMP
ADACMP
/*

//

COMPRESS FILE=1
FNDEF='01,AA,008,B,DE’
FNDEF='01,BA, 020,A,NU,DE’
FNDEF='01,BB, 015,A,NU,DE’
FNDEF='01,BC,001,A,FI’
FNDEF='01,CA,001,A,NU,DE’
FNDEF='01,CB, 002,U,NU,DE’
FNDEF='01,CC,010,A,NU,DE’
FNDEF='01,CD, 002,U,NU,DE’
FNDEF='01,DA, 005,U, NU’
FNDEF='01,DB, 020,A,NU,DE’
FNDEF='01,DC, 015,A,NU,DE’
FNDEF='01,DD, 002,A,NU,DE’
FNDEF='01,DE, 005,U,NU,DE’
FNDEF='01,DF, 008,A,NU,DE’
FNDEF='01,FA, 020,A,NU,DE’
FNDEF='01,FB, 006,U,NU,DE’
FNDEF='01,FC,006,U,NU’
FNDEF='01,GA, 002,U,NU’
FNDEF='01,HA, 002,U,NU’
FNDEF='01,IA,002,U,NU’

FNDEF='01,KA,002,U,NU’
FNDEF='01,LA,030,A,NU,DE’
SUBDE='SB=DE (3,5) ’

SUPDE='SP=CA(1,1),CB(1,2),CD(1,2)"

PHONDE="'PA (BA) '

<===

ADACMP

ADACMP DECOMPRESS

/ /ADACMP JOB

//*

//* ADACMP COMPRESS

//* DECOMPRESS A FILE

//*

/ /DECMP EXEC PGM=ADARUN

//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs .LOAD <=== ADABAS LOAD
//*

//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1l <=== ASSO
//DDDATAR1 DD DISP=SHR, DSN=EXAMPLE.DByyyyy.DATAR1 <===DATA
//DDWORKR1 DD DISP=SHR, DSN=EXAMPLE.DByyyyy.WORKR1 <===WORK

/ /DDDRUCK DD SYSOUT=X

//DDPRINT DD SYSOUT=X

//SYSUDUMP DD SYSOUT=X

/ /DDEBAND DD DISP=0OLD, DSN=EXAMPLE .DByyyyy.COMP01, UNIT=TAPE,

// VOL=SER=TAPEO1

//DDAUSBA DD DISP= (NEW, KEEP) , DSN=EXAMPLE .DByyyyy.DECOMP01, UNIT=DISK, ==
// VOL=SER=DISK01,SPACE= (TRK, (200,10) ,RLSE)

//DDFEHL DD DISP= (NEW, KEEP) , DSN=EXAMPLE .DByyyyy.FEHL, UNIT=DISK, =
// VOL=SER=DISK01, SPACE= (TRK, 1)

/ /DDCARD DD *

ADARUN PROG=ADACMP, MODE=MULTI, SVC=xxx, DEVICE=dddd, DBID=yyyyy

/*

/ /DDKARTE DD *

ADACMP DECOMPRESS INFILE=1

00000100

/*

//

115

Adabas Utilities Manual, Volume 1

VM/ESA or zZ/VM

Dataset DD Name Storage More Information
User input data DDEBAND tape/disk

(COMPRESS function)

Compressed data DDEBAND tape/disk Not used if the parame-
(DECOMPRESS function) ter INFILE is specified
Compressed data DDAUSBA tape/disk

(COMPRESS function)

Decompressed data DDAUSBA tape/disk

(DECOMPRESS function)

Rejected data DDFEHL tape/disk

ECS encoding objects DDECS0J tape/disk Required for universal

ADACMP report DDDRUCK
ADARUN messages DDPRINT
ADARUN parameters DDCARD

ADACMP control cards DDKARTE
and data definitions

JCL Example (VM/ESA or zZ/VM)

ADACMP COMPRESS

116

disk/terminal/printer
disk/terminal/printer
disk/terminal/reader
disk/terminal/reader

DATADEF DDEBAND,DSN=FILE015.CMPD015,MODE=A
DATADEF DDAUSBA,DSN=FILE015.LODD015,MODE=A
DATADEF DDFEHL,DSN=FILE015.CMPERROR, MODE=A
DATADEF DDDRUCK, DSN=ADACMP .DDDRUCK, MODE=A
DATADEF DDPRINT, DSN=ADACMP.DDPRINT, MODE=A

DATADEF DUMP, DUMMY

DATADEF DDCARD, DSN=RUNCMP .CONTROL, MODE=A
DATADEF DDKARTE,DSN=FILE0O1.CMPCO015,MODE=A

ADARUN

Contents of RUNCMP CONTROL A1:

ADARUN PROG=ADACMP, DEVICE=dddd, DB=yyyyy

encoding support

Contents of FILEOO1 CMPCO015 Al:

ADACMP COMPRESS NUMREC=1000, FDT=1,USERISN,DEVICE=dddd, eeee

VSE/ESA
File File Name Storage Logical Unit
User input data EBAND tape SYS010
(COMPRESS function) disk *
Compressed data EBAND tape SYS010
(DECOMPRESS function) disk *
Compressed data AUSBA tape SYS016
(COMPRESS function) disk *
Decompressed data AUSBA tape SYS016
(DECOMPRESS function) disk *
Rejected data FEHL tape SYS017
disk *
ECS encoding objects ECSOJ tape SY S020
disk *
ADACMP report - printer SYS009
ADARUN messages - printer SYSLST
ADARUN parameters - reader SYSRDR
CARD tape SY S000
CARD disk *
ADACMP control cards — reader SYSIPT

and data definitions

* Any programmer logical unit may be used.

ADACMP

Mor e Information

Not used if parameter
INFILE is specified

Required for univer-
sal encoding support

117

Adabas Utilities Manual, Volume 1

JCS Examples (VSE/ESA)
See appendix B for descriptions of the VSE procedures.

Refer to member ADACMPX for the COMPRESS example and member ADACMPD.X for the
DECOMPRESS example.

ADACMP COMPRESS

* $$ JOB JNM=ADACMP, CLASS=A,DISP=D

* $$ LST CLASS=A,DISP=D

* COMPRESS A FILE

// JOB ADACMP

// EXEC PROC=ADAVVLIB

// EXEC PROC=ADAVVFIL

// ASSGN SYS010, TAPE

// PAUSE MOUNT LOAD INPUT FILE ON TAPE cuu
// TLBL EBAND, 'EXAMPLE.DByyyyy.UNCOMPO1’
// MTC REW,SYS010

// DLBL AUSBA, ’'EXAMPLE.DByyyyy.COMPO1’,,SD
// EXTENT SYS016,,,,sssSss,nnnnn

// ASSGN SYS016,DISK,VOL=DISKO1l, SHR

// DLBL FEHL,'EXAMPLE.DByyy.FEHL’,,b SD
// EXTENT SYS017,,,,sssSss,nnnnn

// ASSGN SYS017,DISK,VOL=DISKO02, SHR

// EXEC ADARUN, SIZE=ADARUN

ADARUN PROG=ADACMP, MODE=MULTI, SVC=xxx, DEVICE=dddd, DBID=yyyyy
/*

ADACMP COMPRESS FILE=1

ADACMP FNDEF='01,AA,008,B,DE’

ADACMP FNDEF='01,BA,020,A,NU,DE’

ADACMP FNDEF='01,BB,015,A,NU,DE’

ADACMP FNDEF='01,BC,001,A,FI’

ADACMP FNDEF='01,CA,001,A,NU,DE’

ADACMP FNDEF='01,CB,002,U,NU,DE’

ADACMP FNDEF='01,CC,010,A,NU,DE’

ADACMP FNDEF='01,CD,002,U,NU,DE’

ADACMP FNDEF='01,DA,005,U,NU’

ADACMP FNDEF='01,DB,020,A,NU,DE’

ADACMP FNDEF='01,DC,015,A,NU,DE’

ADACMP FNDEF='01,DD,002,A,NU,DE’

ADACMP FNDEF='01,DE,005,U,NU,DE’

ADACMP FNDEF='01,DF,008,A,NU,DE’

ADACMP FNDEF='01,FA,020,A,NU,DE’

ADACMP FNDEF='01,FB,006,U,NU,DE’

ADACMP FNDEF='01,FC,006,U,NU’

118

ADACMP

ADACMP FNDEF='01,GA,002,U,NU’
ADACMP FNDEF='01,HA,002,U,NU’
ADACMP FNDEF='01,IA,002,U,NU’
ADACMP FNDEF='01,KA,002,U,NU’
ADACMP FNDEF='01,LA,030,A,NU,DE’
ADACMP SUBDE='SB=DE (3,5)"

ADACMP SUPDE='SP=CA(1,1),CB(1,2),CD(1,2)’
ADACMP PHONDE='PA (BA) ’

/*

/&

* $$ EOJ

ADACMP DECOMPRESS

* $$ JOB JNM=ADACMPD, CLASS=A,DISP=D

* $$ LST CLASS=A,DISP=D

* DECOMPRESS A FILE

// JOB ADACMPD

// EXEC PROC=ADAVVLIB

// EXEC PROC=ADAVVFIL

// ASSGN SYS010, TAPE

// PAUSE MOUNT LOAD INPUT FILE ON TAPE cuu
// TLBL EBAND, 'EXAMPLE.DByyyyy.COMP01’

// MTC REW,SYS010

// DLBL AUSBA, ’'EXAMPLE.DByyyyy.DECOMPO1’,,SD
// EXTENT SYS016,,,,sssSss,nnnnn

// ASSGN SYS016,DISK,VOL=DISKO1l, SHR

// DLBL FEHL,'EXAMPLE.DByyy.FEHL’,,b SD

// EXTENT SYS017,,,,sssSss,nnnnn

// ASSGN SYS017,DISK,VOL=DISKO02, SHR

R R R R R EEE SR SRS EEEE R R SRR EE SRR REEEEEEEREEREEEREEREEREEREEEEEEEEEEEEEEREESEESSE]
* REMEMBER TO CUSTOMIZE PARAMETERS OF ADABAS UTILITY

R R R EEEEE SR SRS SR EEERE SRR EE SRR REEEEERE SR EREEEREEREEREEREEREEEEEEEEEEEEREESEESSE]
// EXEC ADARUN, SIZE=ADARUN

ADARUN PROG=ADACMP, MODE=MULTI, SVC=xxx, DEVICE=dddd, DBID=yyyyy

/*

ADACMP DECOMPRESS INFILE=1

/*

/&

* $$ EOJ

119

120

ADACNYV : DATABASE CONVERSION

Functional Overview

The ADACNV dtility converts (CONVERT) an Adabas database from version 5.2 or above to
a higher version, and the reverse (REVERT).

Warning:
Before you convert a database, you must terminate all active nucleus or utility jobs normally.

To ensure database integrity, ADACNV writes changed blocks first to intermediate storage; that
is, to the sequential dataset DD/FILEA. After al changed blocks have been written out to
DD/FILEA, a“point of no return” is reached and the changed blocks are written to the database.
If ADACNYV terminates abnormally after the “point of no return”, the RESTART parameter can
be used to begin the ADACNYV run by reading the contents of DD/FILEA and writing them out
to the database.

| mportant:

To ensure database integrity, DD/FILEA must be defined permanently and be deleted only after
ADACNV has completed successfully. The DD/FILEA dataset must not be defined as a
temporary dataset that is automatically deleted at the end of the job.

The TEST parameter is provided to check the feasibility of a conversion or reversion without
writing any changes to the database. It is therefore not necessary to terminate all activity on the
database before running ADACNV when you use the TEST parameter.

Database Status

Internally, the utility converts or reverts one version at atime until the target version is attained.
It istherefore important to ensure that all requirements for conversion or reversion between the
current and target database levels have been met before you execute ADACNV without the
TEST parameter.

Before a conversion or reversion begins, ADACNV checks the status of the database:

e The DIB must be empty; that is, no Adabas nucleus or utility may be active or have been
terminated abnormally. If RESTART is specified, the DIB must contain the entry of ADACNYV,
which includes a time stamp.

121

Adabas Utilities Manual, Volume 1

For conversion from version 5.2, the checkpoint block 8 must have enough free space to
accommodate the expanded 24-byte header used for version 5.3 and above. For reversion to
version 5.2, the checkpoint blocks 2024 must be empty.

The Work dataset must not have a pending autorestart.
If this check is successful, ADACNYV locks the database and creates a DIB entry.

For reversions, ADACNV checks whether any features are used that do not exist in the target
version and returns a message if any are found.

Procedure

122

The procedure for converting or reverting an Adabas database is as follows:
If the nucleusis active, use ADAEND to stop it.

Use ADARES PLCOPY/CLCOPY to copy al protection and command logs.
For your installation, this may be done automatically with user exit 2.

Wait until the logs have been copied.

Optionally, back up the database (full or delta).

Execute the ADACNV tility.

Start the nucleus of the version to which you have converted or reverted.

ADACNV

CONVERT : Convert Database to Higher Version

The CONVERT function starts from the Adabas version of the last nucleus session.

ADACNV CONVERT [IGNPPT]
[INOUSERABEND]
[PLOGDEV={multiple-PLOG-device-type | ADARUN-device}]
[RESTART]
[TEST]
[TOVERS= {target-version | ADACNV-version}]

Optional Parameters
IGNPPT : Ignore Parallel Participant Table PLOG Entries
When converting from a version of Adabas that uses the parallel participant table (PPT)

structure to a higher version of Adabas, an error is printed and conversion fails if the system

detects one or more protection logs (PLOGs) from the current version that have not been
copied/merged.

If IGNPPT is specified, the utility will continue processing in spite of the uncopied/unmerged
PLOGs.

NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.

Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

PLOGDEV : Multiple PLOG Device Type
PLOGDEV specifies the physical device type on which the multiple protection log datasets to

be converted are contained. If PLOGDEYV is not specified, the device type specified by the
ADARUN DEVICE parameter is used.

123

Adabas Utilities Manual, Volume 1

RESTART : Rerun after Point of No Return

If ADACNV terminates abnormally after the “point of no return”, that is, after all changed
blocks have been written to DD/FILEA, the RESTART parameter instructs ADACNYV to begin
its run by reading the contents of DD/FILEA and continue by writing them to the database.

TEST : Test Conversion
The TEST parameter tests the feasibility of the conversion operation without actually writing
any changes to the database.

TOVERS: Target Version

The version of Adabas database (version and revision level) to achieve at the end of the
ADACNV run. If the TOVERS parameter is

e gpecified, it must be a version higher than the source version.

e not specified, ADACNV uses its own version as the target version.

The version format is vr indicating the version and revision level; for example, 74.

Conversion Consider ations

The following is an overview of the conversion steps performed by ADACNV.

All Versions

e The data protection area on the Work dataset and the multiple PLOG datasets (if supplied) are
cleared to binary zeros.

From Version 5.2t0 5.3
¢ The new checkpoint file FDT is installed.

e For asecurity file, any search-by-value criteria are adjusted to the new internal search structure.

124

ADACNV

From Version 5.3t06.1

e The free space table (FST) is converted from 3- to 4-byte RABN. If an FST RABN overflow
occurs, the smallest FST extent is removed. This is repeated until the FST fits into the ASSO
block. An appropriate message is printed.

e Unused RABN chains are converted from 3- to 4-byte RABNSs for each loaded file.
. If ablock of unreadable blocks (BUB) exists, it is converted from 3- to 4-byte RABN structure.
e The new security file FDT isinstalled.

¢ Any Deta Save Facility DLOG area header is set to the correct version. If the Delta Save Facility
logging statusis “enabled”, it is set to “disabled” and an appropriate message is printed.

From Version 6.1t0 6.2
e Any Ddta Save Facility DLOG area header is set to the correct version.

From Version 6.2to0 7.1
* Any Deta Save Facility DLOG area header is set to the correct version.

Example
ADACNV CONVERT TOVERS=71

The version of Adabas selected in the last nucleus session is to be converted to a version 7.1
database.

125

Adabas Utilities Manual, Volume 1

REVERT : Revert Database to Lower Version

The REVERT function starts from the Adabas version of the last nucleus session.

ADACNV REVERT TOVERS=target-version
[I[GNPPT]
[NOUSERABEND]
[PLOGDEV={multiple-PLOG-device-type | ADARUN-device}]
[RESTART]
[TEST]

Essential Parameter and Subparameter
TOVERS: Target Version

The version of Adabas database (version and revision level) to achieve at the end of the
ADACNYV run. The TOVERS parameter value must be a version lower than the source version.

The version format is vr indicating the version and revision level; for example, 61.

Optional Parameter
IGNPPT : Ignore Parallel Participant Table PLOG Entries

When reverting from aversion of Adabas that uses the paralld participant table (PPT) structure
to alower version of Adabas, an error is printed and conversion fails if the system detects one
or more protection logs (PLOGS) from the current version that have not been copied/merged.

If IGNPPT is specified, the utility will continue processing in spite of the uncopied/unmerged
PLOGs.

NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” isdisplayed and
the utility terminates with condition code 20.

126

ADACNV

PLOGDEV : Multiple PLOG Device Type

PLOGDEV specifies the physical device type on which the multiple protection log datasets to
be reverted is contained. If PLOGDEYV is not specified, the device type specified by the
ADARUN DEVICE parameter is used.

RESTART : Rerun after Point of No Return

If ADACNV terminates abnormally after the “point of no return”, that is, after all changed
blocks have been written to DD/FILEA, the RESTART parameter instructs ADACNYV to begin
its run by reading the contents of DD/FILEA and continue by writing them to the database.

TEST : Test Conversion

The TEST parameter tests the feasibility of the reversion operation without actually writing any
changes to the database.

Reversion Consider ations

The following is an overview of the reversion steps performed by ADACNV.

All Versions

¢ Reversion isnot possibleif any Adabasfeatureis used in the current version that is not supported
in the target version. This statement applies to all Adabas features that affect the structure of
the database.

From Version 7.1t0 6.2

e Version 7.1 extends the free space table (FST) from one RABN (RABN 10) to five RABNs
(RABNs 10-14). ADACNV checks whether all FST entries fit into one RABN. If not, the
smallest FST extent is removed. This is repeated until the FST fits into one ASSO block. An
appropriate message is printed.

¢ Any Ddta Save Facility DLOG area header is set to the correct version.

127

Adabas Utilities Manual, Volume 1

From Version 6.2t0 6.1
¢ Any Deta Save Facility DLOG area header is set to the correct version.

From Version 6.1t05.3
e The free space table (FST) is reverted from 4- to 3-byte RABNS.
¢ Unused RABN chains are reverted from 4- to 3-byte RABNSs for each loaded file.

¢ Any Deta Save Facility DLOG area header is set to the correct version. If the Delta Save Facility
logging statusis “enabled”, it is set to “disabled” and an appropriate message is printed.

. If ablock of unreadable blocks (BUB) exists, it is reverted from 4- to 3-byte RABN structure.
e The older security file FDT is installed.

From Version 5.3t0 5.2
e The older checkpoint file FDT isinstalled.

e Any security-by-value criteria will not revert. This means that a security file with
security-by-value criteria must be deleted before the reversion and defined again with version
5.2.

Example
ADACNV REVERT TOVERS=53

The Adabas version of the last run of the nucleusis to be converted back (reverted) to aversion
5.3 Adabas database.

128

JCL/JCS Requirements and Examples

ADACNV

This section describes the job control information required to run ADACNV with BS2000,
0S/390 or Z/OS, VM/ESA or z/VM, and V SE/ESA systems, and shows examples of each of the

job streams.
BS2000

Dataset Link Name Storage More Information
Associator DDASSORN disk

Data Storage DDDATARN disk

Work DDWORKR1 disk

Multiple protection logs DDPLOGRnN disk

Intermediate storage DDFILEA tape/disk see note

ADARUN parameters SYSDTA/ DDCARD

ADACNYV parameters SYSDTA/ DDKARTE
ADARUN messages SYSOUT/ DDPRINT
ADACNV messages SYSLST/ DDDRUCK

Note:

Operations Manual

Messages and Codes
Messages and Codes

The intermediate storage is read an undefined number of times. If this storage is on
tape/cassette, it is necessary to use the ADARUN parameter TAPEREL=NO to prevent the tape
from being released. Software AG then recommends that you put a tape release command in the
job to free the tape/cassette unit when the job has finished. See the example following.

129

Adabas Utilities Manual, Volume 1

ADACNYV JCL Example (BS2000)
With Intermediate Disk File Storage

In SDF Format:

/ .ADACNV LOGON

/MODIFY-TEST-OPTIONS DUMP=YES

/REMARK *

/REMARK * A D A C N V CONVERT THE DATABASE TO NEW VERSION
/REMARK *

/DELETE-FILE ADAyyyyy.FILEA

/SET-JOB-STEP

/CREATE-FILE ADAyyyyy.FILEA, PUB(SPACE=(4800,480))
/SET-JOB-STEP

/ASS-SYSLST L.CNV.DATA

/ASS-SYSDTA *SYSCMD

/SET-FILE-LINK DDLIB,ADAvrs.MOD

/SET-FILE-LINK DDASSOR1,ADAYyyyy.ASSO, SHARE-UPD=YES
/SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA, SHARE-UPD=YES
/SET-FILE-LINK DDWORKR1,ADAyyyyy.WORK, SHARE-UPD=YES
/SET-FILE-LINK DDPLOGR1,ADAYyyyy.PLOGR1, SHARE-UPD=YES
/SET-FILE-LINK DDPLOGR2,ADAyyyyy.PLOGR2, SHARE-UPD=YES
/SET-FILE-LINK DDFILEA,ADAyyyyy.FILEA

/START-PROGRAM *M (ADA.MOD, ADARUN) , PR-MO=ANY

ADARUN PROG=ADACNV,DB=yyyyy, IDTNAME=ADABASS5B

ADACNV CONVERT TOVERS=vr

/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/ .ADACNV LOGON

/OPTION MSG=FH,DUMP=YES

/REMARK *

/REMARK * A D A C N V CONVERT THE DATABASE TO NEW VERSION
/REMARK *

/SYSFILE SYSLST=L.CNV.DATA

/FILE ADA.MOD,LINK=DDLIB

/FILE ADAyyyyy.ASSO,LINK=DDASSOR1, SHARUPD=YES
/FILE ADAyyyyy.DATA, LINK=DDDATAR1, SHARUPD=YES
/FILE ADAyyyyy.WORK, LINK=DDWORKR1, SHARUPD=YES
/FILE ADAyyyyy.PLOGR1,LINK=DDPLOGR1, SHARUPD=YES
/FILE ADAyyyyy.PLOGR2, LINK=DDPLOGR2, SHARUPD=YES
/FILE ADAyyyyy.FILEA,LINK=DDFILEA, SPACE=(4800,480)
/EXEC (ADARUN, ADA.MOD)

ADARUN PROG=ADACNV,DB=yyyyy, IDTNAME=ADABASS5B
ADACNV CONVERT TOVERS=vr

/LOGOFF NOSPOOL

130

ADACNV

With Intermediate Tape/Cassette File Storage
In SDF Format:

/ .ADACNV LOGON

/MODIFY-TEST-OPTIONS DUMP=YES

/REMARK *

/REMARK * A D A C N V CONVERT THE DATABASE TO NEW VERSION
/REMARK * INTERMEDIATE TAPE/CASSETTE STORAGE

/REMARK *

/DELETE-FILE ADAyyyyy.FILEA

/SET-JOB-STEP

/CREATE-FILE ADAyyyyy.FILEA, TAPE (DEV-TYPE=T-C1,VOL=ADA0O01)
/SET-JOB-STEP

/ASS-SYSLST L.CNV.DATA

/ASS-SYSDTA *SYSCMD

/SET-FILE-LINK DDLIB,ADAvrs.MOD

/SET-FILE-LINK DDASSOR1,ADAYyyyy.ASSO, SHARE-UPD=YES
/SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA, SHARE-UPD=YES
/SET-FILE-LINK DDWORKR1,ADAyyyyy.WORK, SHARE-UPD=YES
/SET-FILE-LINK DDPLOGR1,ADAYyyyy.PLOGR1, SHARE-UPD=YES
/SET-FILE-LINK DDPLOGR2,ADAyyyyy.PLOGR2, SHARE-UPD=YES
/SET-FILE-LINK DDFILEA,ADAyyyyy.FILEA, TAPE (FILE-SEQ=1) , OPEN-MODE=OUTIN
/START-PROGRAM *M (ADA.MOD, ADARUN) , PR-MO=ANY

ADARUN PROG=ADACNV,DB=yyyyy, IDTNAME=ADABAS5B, TAPEREL=NO
ADACNV CONVERT TOVERS=vr

/SET-JOB-STEP

/REMARK * NOW RELEASE THE TAPE

/REM-FILE-LINK DDFILEA, UNL-REL-TAPE=YES

/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/ .ADACNV LOGON

/OPTION MSG=FH,DUMP=YES

/REMARK *

/REMARK * A D A C N V CONVERT THE DATABASE TO NEW VERSION
/REMARK * INTERMEDIATE TAPE/CASSETTE STORAGE

/REMARK *

/SYSFILE SYSLST=L.CNV.DATA

/FILE ADA.MOD,LINK=DDLIB

/FILE ADAyyyyy.ASSO,LINK=DDASSOR1, SHARUPD=YES

/FILE ADAyyyyy.DATA,LINK=DDDATARI, SHARUPD=YES

/FILE ADAyyyyy.WORK, LINK=DDWORKR1, SHARUPD=YES

/FILE ADAyyyyy.PLOGR1,LINK=DDPLOGR1, SHARUPD=YES

/FILE ADAyyyyy.PLOGR2, LINK=DDPLOGR2, SHARUPD=YES

/FILE ADAyyyyy.FILEA,LINK=DDFILEA,DEVICE=T C1,VOLUME=ADAOOL

131

Adabas Utilities Manual, Volume 1

/EXEC (ADARUN, ADA.MOD)

ADARUN PROG=ADACNV,DB=yyyyy, IDTNAME=ADABASS5B, TAPEREL=NO

ADACNV CONVERT TOVERS=vr

/STEP

/REMARK * NOW RELEASE THE TAPE
/REL DDFILEA, UNLOAD

/LOGOFF NOSPOOL

0S/3900r z/OS

132

Dataset DD Name Storage More Information
Associator DDASSORN disk

Data Storage DDDATARN disk

Work DDWORKR1 disk

Multiple protection logs DDPLOGRnN disk

Intermediate storage DDFILEA tape/disk

ADARUN parameters DDCARD reader Operations Manual
ADACNV parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes
ADACNV messages DDDRUCK printer Messages and Codes

ADACNYV JCL Example (OS/390 or z/OS)

Refer to ADACNV in the MV SJOBS dataset for this example.

/ /ADACNV JOB

//*

//* ADACNV :

//* EXAMPLE HOW TO USE ADACNV TO CONVERT DATABASE
//* TO A DIFFERENT VERSION

//*

//CNV EXEC PGM=ADARUN

//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <===
//*

//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1
//DDDATARL DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATARL
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1
//DDFILEA DD DSN=EXAMPLE.DBYYYYY.FILEA,
UNIT=TAPE, VOL=SER=XXXXXX,DISP= (, KEEP)

/ /DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
/ /DDCARD DD *

ASEAY

N

N
L | | R | R
L | | R | R
L | | R | B

N

ADARUN PROG=ADACNV, SVC=xxX,DE=3390,DBID=yyyyy

/*

/ /DDKARTE DD *
ADACNV CONVERT TOVERS=vr
/*

//

VM/ESA or ZIMV

ADACNV

ADABAS LOAD

ASSO
DATA
WORK
INTERMEDIATE
FILE

Dataset DD Name Storage More Information
Associator DDASSORN disk

Data Storage DDDATARN disk

Work DDWORKRnN disk

Multiple protection logs DDPLOGRnN disk

Intermediate storage DDFILEA tape/disk

ADARUN parameters DDCARD disk/terminal/reader ~ Operations Manual
ADACNYV parameters DDKARTE disk/terminal/reader

ADARUN messages DDPRINT
ADACNV messages DDDRUCK

disk/terminal/printer
disk/terminal/printer

Messages and Codes
Messages and Codes

133

Adabas Utilities Manual, Volume 1

ADACNYV JCL Example (VM/ESA or zZ/VM)

DATADEF DDDATAR1, DSN=ADABASVvV
DATADEF DDASSOR1, DSN=ADABASVvV
DATADEF DDWORKR1, DSN=ADABASVvV
DATADEF DDPLOGR1, DSN=ADABASVV
DATADEF DDPLOGR2, DSN=ADABASVvV

.DATA, VOL=DATAV1
.ASSO, VOL=ASSOV1
.WORK, VOL=WORKV1
.PLOGR1, VOL=PLOGV
.PLOGR2, VOL=PLOGV

DATADEF DDFILEA,DSN=ADACNV.FILEA,MODE=A
DATADEF DDPRINT, DSN=ADACNV,DDPRINT, MODE=A

DATADEF DUMP, DUMMY

DATADEF DDDRUCK, DSN=ADACNV.DDDRUCK, MODE=A
DATADEF DDCARD, DSN=RUNCNV.CONTROL, MODE=A
DATADEF DDKARTE, DSN=CONVERT .CONTROL, MODE=A

ADARUN

Contents of RUNCNV CONTROL A1:

ADARUN PROG=ADACNV,DEVICE=dddd,DB=yyyyy

Contents of CONVERT CONTROL Al:

ADACNV CONVERT TOVERS=vr

VSE/ESA
File FileName Storage Logical Unit More Information
Associator ASSORnN disk *
Data Storage DATARN disk *
Work WORKRnN disk *
Multiple protection logs PLOGRnN disk *
Intermediate storage FILEA tape SYS015
disk *
ADARUN parameters — reader SYSRDR Operations Manual
CARD tape SY S000
CARD disk *
ADACNV parameters — reader SYSIPT
ADARUN messages - printer SYSLST Messages and Codes
ADACNV messages - printer SY S009 Messages and Codes

134

ADACNV

* Any programmer logical unit may be used.

ADACNV JCS Example (VSE/ESA)

See appendix B for a description of the V SE procedures.
Refer to member ADACNV.X for this example.

* $$ JOB JNM=ADACNV, CLASS=A,DISP=D

* $$ LST CLASS=A,DISP=D

* CONVERT DATABASE TO NEW VERSION
// JOB ADACNV

// EXEC PROC=ADAVVLIB

// EXEC PROC=ADAVVFIL

// DLBL FILEA,’'ADACNV.WORK.FILE’,0,SD
// EXTENT SYS015,,,,ssss,nnnn

// ASSGN SYS015,DISK,VOL=vvvvvv, SHR

// EXEC ADARUN, SIZE=ADARUN

ADARUN DBID=yyyyy,DEVICE=dddd, PROG=ADACNV, SVC=XxXx
/*

ADACNV CONVERT TOVERS=vr

/*

/&

* $$ EOJ

135

136

ADADBS : DATABASE SERVICES
Functional Overview

The ADADBS tility performs the following functions:

Function
ADD

ALLOCATE
CHANGE
CVOLSER
DEALLOCATE
DECREASE
DELCP
DELETE
DSREUSE
ENCODEF
INCREASE
ISNREUSE
MODFCB

NEWFIELD
ONLINVERT
ONLREORFASSO
ONLREORFDATA
ONLREORFILE

OPERCOM
PRIORITY
RECOVER
REFRESH

Action

add a dataset to the Associator, Data Storage, protection log,
or command log

allocate logical extents

change standard field length

list logical extents on a given disk volume

deallocate logical extent

decrease size of an existing Associator or Data Storage dataset
delete checkpoint records

delete file, protection log dataset, or command log dataset
reuse Data Storage blocks

change file encoding

increase size of an existing Associator or Data Storage dataset
reuse I1SNs

modify file parameters

— block padding factors

— maximum blocks per extent

— maximum compressed record length

add new field

start an online invert process

start an online reorder process for afile's Associator
start an online reorder process for a file's Data Storage

start an online reorder process for afile's Associator and Data
Storage

issue Adabas operator commands
change user priority

recover alocated space

set file to empty status

Page
139

141
143
145
146
148
149
151
153
155
156
164
165

168
171
173
175
178

181
198
199
200

137

Adabas Utilities Manual, Volume 1

Function Action Page
REFRESHSTATS refresh statistical values 201
RELEASE release descriptor 203
RENAME change file or database name 205
RENUMBER change file number 206
RESETDIB reset entry in active utility list 207
TRANSACTIONS suspend/resume normal update transaction processing 209
UNCOUPLE uncouple files 212
Note:

All ADADBS functions can also be performed using Adabas Online System (AOS).

Any number of functions may be performed during a single execution of ADADBS.

Syntax Checking with the TEST Parameter

The ADADBS functions now include a syntax-checking-only mode. When the TEST parameter
is specified, the actual ADADBS function is checked, but not performed.

The ADADBS tility can perform multiple functions. As a result, ADADBS reads the
parameters up to the next specified ADADBS function, and then executes the
function/parameters just read. Then, ADADBS reads the function and parameters up to the
following function, and so on. Therefore, to ensure that no functions are executed, the TEST
parameter must be specified either before or within the first function/parameter group, as the
following example shows:

ADADBS TEST
ADADBS DELETE FILE=1
ADADBS DELETE FILE=2

138

ADADBS

ADD : Add Dataset

The ADD function adds a new dataset to the Associator or Data Storage.

ADADBS ADD { ASSOSIZE=size [ASSODEV={device-type | ADARUN-device}] |
DATASIZE=size [DATADEV={device-type | ADARUN-device}] |
[NOUSERABEND]
[TEST]

Associator or Data Storage Dataset

For the Associator or for Data Storage, the dataset to be added may be on the same device type
as that currently being used or on a different one. A maximum of five datasets each may be
assigned to the Associator and Data Storage.

Note:
The Associator and Data Storage dataset sizes must be added separately. It is not possible to

add both with a single operation.

After an ADD operation is completed for an Associator or Data Storage dataset, the ADD
function automatically ends the current nucleus session. This allows for the necessary
Associator or Data Storage formatting with ADAFRM before a new session is started. A
message tells you that the nucleus has been stopped.

Procedure

To add an additional dataset to the Associator or Data Storage

1. Execute the ADD function.

2. Allocate the dataset with the operating system, then format the additional space using the
ADAFRM tility.

3. Add necessary JCL/JCS to al Adabas nucleus and Adabas utility execution procedures.

139

Adabas Utilities Manual, Volume 1

Essential Parameter and Subparameter
ASSODEV | DATADEYV : Device Type

The device type to be used for the new dataset. These parameters are required only if a different
device type from the device type specified by the ADARUN DEVICE parameter isto be used.

For VSAM datasets, use dynamic device types; that is, DDxxxxR1=9999, DDxxxxR2=8888,
... DDxxxxR5=5555. For example, if DDDATARS is added, DATADEV=7777.
ASSOSIZE | DATASIZE : Size of Dataset to be Added

The number of cylinders to be contained in the new dataset.

Optional Parameters
NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.

Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” isdisplayed and
the utility terminates with condition code 20.

TEST : Test Syntax
The TEST parameter tests the operation syntax without actually performing the operation. Note

that the validity of values and variables cannot be tested: only the syntax of the specified

parameters can be tested. See page 138 for more information about using the TEST parameter
in ADADBS functions.

Examples

A new dataset containing 800 cylinders on 3350 disks is to be added to Data Storage.
ADADBS ADD DATASIZE=800, DATADEV=3350

140

ADADBS

A new dataset containing 100 cylinders is to be added to the Associator on the Associator’s
existing device type.

ADADBS ADD ASSOSIZE=100

ALLOCATE : Allocate File Extent

The ALLOCATE function may be used to allocate an address converter, Data Storage, normal
or upper index extent of a specific size. Only one extent may be alocated per ADADBS
execution.

ADADBS ALLOCATE FILE=file-number
{ ACSIZE | DSSIZE | NISIZE | UISIZE }=size
[DEVICE={device-type | ADARUN-device}]
[NOUSERABEND]
[PASSWORD="password’]
[STARTRABN=start-rabn]
[TEST]

Essential Parameters
FILE : Filefor Which an Extent Is Allocated

FILE specifies the number of the file for which the extent is to be allocated.

ACSIZE | DSSIZE | NISIZE | UISIZE : Extent Type and Size

These parameters are used to indicate the type and size of the extent to be allocated. One and
only one extent type and size can be specified in asingle ADADBS ALLOCATE statement. The
specified value can be either cylinders or blocks; a size in blocks must be followed by “B” (for
example, 2000B).

Optional Parameters
DEVICE : Device Type

The device type to be used for file alocation. This parameter is required only if a different
device type from the device type specified by the ADARUN DEVICE parameter isto be used.

141

Adabas Utilities Manual, Volume 1

NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.

Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” isdisplayed and
the utility terminates with condition code 20.

PASSWORD : File Password
The password of the file. This parameter is required if the file is password-protected.

STARTRABN : Starting RABN for Extent

The beginning RABN of the extent to be allocated. If this parameter is omitted, ADADBS will
assign the starting RABN.

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
page 138 for more information on using the TEST parameter in ADADBS functions.

Example

An address converter extent of 30 blocks is to be allocated for file 15.
ADADBS ALLOCATE FILE=15,ACSIZE=30B

142

ADADBS

CHANGE : Change Standard Length of aField

The CHANGE function can be used to change
e the standard length of an Adabas field;
e anormal aphanumeric (A) field to along-alpha (LA) field; or
e the default field format from unpacked (U) to packed (P).

Only one of these changes may be performed per function execution.

No modifications to records in Data Storage are made by this function. The user is, therefore,
responsible for preventing references to the field that would cause invalid results because of an
inconsistency between the new standard length as defined to Adabas and the actual number of
bytes contained in the record.

When changing the length of an Adabas expanded file field, the change must be made to each
individual component file of the expanded file. Each CHANGE operation on a component file
causes a message that confirms the change, and returns condition code 4.

ADADBS CHANGE FILE=file-number
FIELD="field-name
{ FORMAT=P | LENGTH=new-length | OPTION=LA }
[INOUSERABEND]
[PASSWORD="password’]
[TEST]

Essential Parameters
FILE : File Containing the Field

The file in which the field whose length is to be changed is contained. An Adabas system file
may not be specified.
FIELD : Field to be Changed

The field whose standard length is to be changed. The field cannot be one that was defined with
the FI option, or a field with a defined length of zero (variable-length field). Specify the field
name between apostrophes (').

143

Adabas Utilities Manual, Volume 1

FORMAT=P : New Field Format

The new standard field format. The only field format change supported isfrom ‘U’ (unpacked)
to ‘P (packed). The field cannot be parent of a sub-/super-/hyperdescriptor.

One of the parameters FORMAT, LENGTH, or OPTION must be specified; but only one of the
three may be specified.

LENGTH : New Field Length

The new standard length for the field. A length of 0 is not permitted, nor can a field with an
existing defined length of zero (such as avariable-length field) be redefined to a standard length.

One of the parameters FORMAT, LENGTH, or OPTION must be specified; but only one of the
three may be specified.

OPTION=LA : New Field Option

The new field option. The only field option change supported is from normal a phanumeric (A)
to long-alpha (LA).

One of the parameters FORMAT, LENGTH, or OPTION must be specified; but only one of the
three may be specified.

Optional Parameters
NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

PASSWORD : File Password

The password of the file containing the field to be changed. This parameter is required if the
file is password-protected.

144

ADADBS

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
page 138 for more information on using the TEST parameter in ADADBS functions.

Example

The standard length of field AB in file 5 is to be changed to 11 bytes.
ADADBS CHANGE FILE=5,FIELD="AB’,LENGTH=11

CVOLSER : Print Adabas Extents on Given Volume

The CVOLSER function is used to print the Adabas file extents contained on a disk volume.

ADADBS CVOLSER VOLSER=volume-serial-number
[INOUSERABEND]
[TEST]

Essential Parameter
VOLSER : Volume Serial Number

VOLSER is the volume serial number of the disk volume to be used.

Optional Parameters
NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.

Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

145

Adabas Utilities Manual, Volume 1

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
page 138 for more information on using the TEST parameter in ADADBS functions.

Example

The Adabas file extents contained on disk volume DISKO02 are to be printed.
ADADBS CVOLSER VOLSER=DISK02

DEALLOCATE : Dedlocate File Extent

The DEALLOCATE function may be used to deallocate an address converter, Data Storage,
normal index or upper index extent. Only one extent may be deallocated per ADADBS
execution.

ADADBS DEALLOCATE FILE=file-number
{ ACSIZE | DSSIZE | NISIZE | UISIZE }=size
[NOUSERABEND]
[PASSWORD="password’]
[STARTRABN=start-rabn]
[TEST]

Essential Parameters
ACSIZE | DSSIZE | NISIZE | UISIZE : Extent Type and Size

These parameters specify the type and size of extent to be deallocated. One and only one extent
type and size may be specified. The size must be in number of RABN blocks followed by “B”
(for example, DSSIZE=20B), and cannot exceed the number of unused RABNSs at the end of
an extent.

FILE : Filefor Which an Extent I's Deallocated

FILE specifies the file for which the extent is to be deallocated. Specify a decimal value.

146

ADADBS

Optional Parameters
NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.

Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

PASSWORD : File Password

The password of the file for which space is to be deallocated. This parameter isrequired if the
file is password-protected. Specify the password between apostrophes ().

STARTRABN : Starting RABN for Extent

The first RABN of the extent in which deallocation isto take place. If this parameter is omitted,

the last extent for the file will be deallocated. In the address converter, only the last extent may
be deallocated.

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
page 138 for more information on using the TEST parameter in ADADBS functions.

Example

An address converter extent of 30 blocks is to be deallocated for file 15.
ADADBS DEALLOCATE FILE=15,ACSIZE=30B

147

Adabas Utilities Manual, Volume 1

DECREASE : Decrease Associator/Data Storage

The DECREASE function decreases the size of the last dataset currently being used for

Associator or Data Storage. The space to be released must be available in the free space table
(FST).

The DECREASE function does not deallocate any of the specified physical extent space.

ADADBS DECREASE { ASSOSIZE | DATASIZE }=sizeB
[NOUSERABEND]
[TEST]

Essential Parameter
ASSOSIZE | DATASIZE : Blocksto Be Decreased

ASSOSIZE/DATASIZE define the number of blocks by which the Associator or Data Storage
dataset is to be decreased, specified as a decimal value followed by “B”. Either ASSOSIZE or
DATASIZE can be specified, but not both. If both ASSOSIZE and DATASIZE are to be
specified, each must be entered on a separate ADADBS DECREASE statement.

Optional Parameters
NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

TEST : Test Syntax

148

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
page 138 for more information on using the TEST parameter in ADADBS functions.

ADADBS

Example

The Associator is to be decreased by 100 blocks and Data Storage is to be decreased by 200
blocks.

ADADBS DECREASE ASSOSIZE=100B
ADADBS DECREASE DATASIZE=200B

Procedure

A wDd PR

To deallocate space, perform the following steps:
Decrease the database with the DECREASE function;
Save the database with ADASAV SAVE;

Reformat the datasets with ADAFRM;

Restore the database with ADASAV.

DELCP : Delete Checkpoint Records

The DELCP function deletes checkpoint records.

After running ADADBS DELCP, the remaining records are reassigned ISNs to include those
ISNs made available when the checkpoint records were deleted. The lower |SNs are assigned
but the chronological order of checkpoints is maintained.

ADADBS DELCP TODATE=yyyymmdd
[NOUSERABEND]
[TEST]

Essential Parameter
TODATE : Last Datefor Deleted Records

TODATE specifies the latest date for which checkpoint information is deleted. Checkpoint
information dated after the date specified by TODATE= is not deleted. TODATE= must be
specified; there is no default date. Specify the date as a four-digit decimal value for year
followed by two-digit decimal values for month and day, in that order.

149

Adabas Utilities Manual, Volume 1

Optional Parameters
NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.

Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
page 138 for more information on using the TEST parameter in ADADBS functions.

Example

All checkpoint records up to and including February 1, 1996 are to be deleted.
ADADBS DELCP TODATE=19960201

150

ADADBS

DELETE : Delete File

The DELETE function deletes an Adabas file from the database.

ADADBS DELETE {FILE=fnr [KEEPFDT][PASSWORD="password]}
[NOUSERABEND)]
[TEST]

When an Adabas file is deleted from the database, all logical extents assigned to the file are
deallocated. The released space may be used for a new file or for a new extent of an existing
file.

The file to be deleted may not be coupled. If an Adabas expanded file is specified, the complete
expanded file (the anchor and all component files) is deleted.

When the DELETE function completes successfully, any locks previously set with the operator
commands LOCKU or LOCKF are reset.

Essential Parameter
FILE : Fileto Be Deleted

FILE specifies the number of the Adabas file to be deleted. An Adabas system file may be
specified only if ADADBS DELETE is the only Adabas user; deleting a system file
automatically causes Adabas to terminate when finished. Adabas system files are checkpoint,
security, triggers, and any other files loaded with the ADALOD utility’s SY SFILE option. To
delete an Adabas expanded file, specify the file number (also the anchor file).

Optional Parameters
KEEPFDT : Retain the Field Definition Table

The KEEPFDT parameter, if specified, instructs ADADBS DELETE to keep the deleted file's
field definition table (FDT) for later use by ADACMP If this parameter is specified, afile with
the same number as the one now being deleted can only be later loaded if either the new file's
FDT isthe same as that of the deleted file, or the load operation specifiesthe IGNFDT parameter
to accept the new file's FDT.

151

Adabas Utilities Manual, Volume 1

NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” isdisplayed and
the utility terminates with condition code 20.

PASSWORD : File Password

PASSWORD specifies the password of the file to be deleted. This parameter is required if the
file is password-protected.

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
page 138 for more information on using the TEST parameter in ADADBS functions.

Examples

152

File 6 is to be deleted.
ADADBS DELETE FILE=6

Password-protected file 10 is to be deleted. The field definition table is to be retained. File
number 10 cannot be used again until another ADALOD LOAD command is issued with the
IGNFDT option.

ADADBS DELETE FILE=10,KEEPFDT,PASSWORD="FILE10’

ADADBS

DSREUSE : Reuse Data Storage Blocks

The DSREUSE function controls the assignment of Data Storage blocks.

ADADBS DSREUSE FILE=file-number
MODE={ ON | OFF }
[INOUSERABEND]
[PASSWORD="password’]
[RESET]
[TEST]

Essential Parameters
FILE : File Number

FILE is the number of the file for which the DSREUSE setting is to apply.

Block reuseisoriginaly determined when thefile isloaded into the database with the ADALOD
FILE function, or when the system file is defined with the ADADEF DEFINE function. In both
cases, block reuse defaults to “YES’ unless specified otherwise in those functions.

MODE : Reuse M ode

The Data Storage block assignment mode to be in effect. MODE=OFF indicates that Data
Storage blocks which become free as a result of record deletion may not be reused, in effect
cancelling the ADADBS DSREUSE function. MODE=ON indicates that Data Storage blocks
may be reused. The MODE= parameter has no default, and must be specified.

153

Adabas Utilities Manual, Volume 1

Optional Parameters
NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.

Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

PASSWORD : File Password

PASSWORD specifies the file's security password, and is required if the file is
password-protected.

RESET : Reset Space Pointer

The RESET parameter causes searches for new Data Storage space to start at the beginning of
the file.

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
page 138 for more information on using the TEST parameter in ADADBS functions.

Example

Data Storage blocks for file 6 are not to be reused.
ADADBS DSREUSE FILE=6,MODE=0FF

154

ADADBS

ENCODEF : Change File Encoding

ADADBS ENCODEF FILE=file-number
[FACODE=alpha-key]
[UWCODE=wide-key]
[NOUSERABEND]
[TEST]

Essential Parameter
FILE : File Number

FILE is the number of the file for which encoding is to be changed.

Optional Parameters
FACODE : Encoding for Alphanumeric Fieldsin File

The FACODE parameter defines the encoding for alphanumeric fields stored in thefile. It can
be applied to files already |oaded. The encoding must be derived from EBCDIC encoding; that
is, X'40' isthe space character. Double-byte character set (DBCS) type encodings are supported
with the exception of DBCS-only. See appendix C for alist of supplied code pages.

FACODE and/or UWCODE must be specified.

NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
page 138 for more information about using the TEST parameter in ADADBS functions.

155

Adabas Utilities Manual, Volume 1

UWCODE : User Encoding for Wide-Character Fieldsin File

The UWCODE parameter defines the user encoding for wide-character fields stored in the file.
It can be applied to files already loaded. Note that the wide file encoding is not changed.

To change the encoding of wide-character fields, the file must be unloaded, decompressed,
compressed, and reloaded.

FACODE and/or UWCODE must be specified. See appendix C for alist of supplied code pages.

Example

In file 1425, change the encoding of alphanumeric fields to use code page 285 (CECP: United
Kingdom, EBCDIC-compatible with X‘40' fill character) and change the encoding of wide
fields to use code page 3396 (IBM, CCSID 4396, Japanese host double byte including 1880
user-defined characters). Note that because UWCODE is changing, the file must be unloaded,
decompressed, compressed, and rel oaded.

ADADBS ENCODEF FILE=1425,FACODE=285,UWCODE=3396

INCREASE : Increase Associator/Data Storage

156

The INCREASE function increases the size of the last dataset currently being used for the
Associator or Data Storage. This function may be executed any number of times for the
Associator. The maximum of five Data Storage space tables (DSSTs) limits Data Storage
increases to four before all five Data Storage extents must be combined into a single extent with
either the REORASSO or REORDB function of the ADAORD LUtility.

Notes:

The Associator and Data Storage dataset sizes must be increased separately. It is not possible
to increase both with a single operation.

After an INCREASE operation is completed, the INCREASE function automatically ends the
current nucleus session. This allows for the necessary Associator or Data Sorage formatting
with ADAFRM before a new session is started. An informational message occurs to tell you that
the nucleus has been stopped.

ADADBS INCREASE {ASSOSIZE | DATASIZE }=size

[NOUSERABEND]
[TEST]

ADADBS

Essential Parameter
ASSOSIZE | DATASIZE : Sizeto Be lncreased

The additional number of blocks or cylinders needed by the Associator or Data Storage dataset.
To specify blocks, add “B” after the value; for example, DATASIZE=50B.

Optional Parameters
NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

TEST : Test Syntax

Use the TEST parameter to test the operation syntax without actually performing the operation.
Only the syntax of the specified parameters can be tested; not the validity of values and
variables. See page 138 for more information about using this parameter.

Example

The Associator is to be increased by 400 cylinders.
ADADBS INCREASE ASSOSIZE=400

General Procedure

The general procedure for increasing the size of the Associator or Data Storage is as follows:
Back up the database using the ADASAV utility. This step is optional but recommended.
2. Execute the ADADBS INCREASE function.

Note:

After an INCREASE operation is completed, the INCREASE function automatically ends the
current nucleus session. This allows for the necessary Associator or Data Sorage formatting
with ADAFRM before a new session is started. An informational message occurs to tell you that
the nucleus has been stopped.

157

Adabas Utilities Manual, Volume 1

3. Format the additional space being added to the dataset with the ADAFRM tility.

Oper ating-System-Specific Procedures
0S/390 or Z/OS Systems

Under OS/390 or z/OS, the same dataset may be formatted by specifying the DISP=MOD
parameter in the JCL. The SPACE parameter for the dataset being increased should be set to

SPACE=(CYL,(0,n))

—where “n” isthe amount of space (in cylinders) being added. The ADAFRM control statement
should also specify the number of cylinders being added. If the increased part of the dataset to
be formatted is contained on a new volume, the VOL parameter of the JCL must include
references to all volumes containing the dataset.

Example 1: OS Single-Volume INCREASE

400 cylinders are to be added to an Associator dataset which currently contains 300 cylinders.
The control statement for the INCREASE function would be

ADADBS INCREASE ASSOSIZE=400

The following JCL example increases the Associator dataset using ADAFRM:

//DDASSOR1 DD DSN=...., DISP=MOD, SPACE= (CYL, (0,400))

—and the actual ADAFRM control statement would be

ADAFRM ASSOFRM SIZE=400

158

ADADBS

Example 2: OS Multivolume INCREASE

To provide the increase in example 1 for multiple volumes, specify the volumes in the JCS:

//DDASSOR1 DD DSN=...
// DISP=(MOD, CATLG) ,VOL=SER=(V1,V2,...),SPACE=(CYL, (0,400)) ..

Include the following step after the INCREASE step but before the FORMAT step to ensure a
correct catalog entry:

//UNCATLG EXEC PGM=IEFBR14
//DDASSOR1 DD DSN=...,DISP=(SHR,UNCATLG)

VSE/ESA Systems

The following procedures are recommended for increasing Associator or Data storage:
1 Save the current database.
2. Update the JCS defining the database to add the new extent on the same volume.

Before anew Associator or Data extent on either a different or the same VSE volume can be
increased with ADADBS INCREASE and formatted with ADAFRM, that volume's table of
contents (VTOC) must be updated to contain the new extent.

Use ajob similar to the following example to update the VTOC for a single volume extent:

* $$ JOB JNM=jobname

* $$ LST ...

* $$ PCH ...

// ASSGN SYS001,DISK,VOL=volume, SHR

// DLBL ASSOEXT, 'dsname’,99/365,DA

// EXTENT SYS001,volumel,1l,0,starttrackl, trackcountl
// EXTENT SYS001,volumel,1l,1,starttrack2,trackcount?2

159

Adabas Utilities Manual, Volume 1

// EXEC ASSEMBLY, GO
MODVTOC CSECT
BALR 9,0
BCTR 9,0
BCTR 9,0
USING MODVTOC, 9
OPEN ASSOEXT
CLOSE ASSOEXT

EOJ RC=0

ASSOEXT DTFPH TYPEFLE=OUTPUT,DEVADDR=SYS001,DEVICE=DISK, MOUNTED=ALL
END

/*

/&

* $$ EOJ

For a two-volume extent, use ajob similar to the following example:

* $$ JOB JNM=jobname
* $S LST
* $S PCH
// ASSGN SYS001,DISK,VOL=volumel, SHR
// ASSGN SYS002,DISK,VOL=volume2, SHR
// DLBL ASSOEXT, 'dsname’,99/365,DA
// EXTENT SYS001,volumel,1l,0,starttrackl, trackcountl
// EXTENT SYS002,volume2,1,1,starttrack2, trackcount?2
// EXEC ASSEMBLY, GO
MODVTOC CSECT
BALR 9,0
BCTR 9,0
BCTR 9,0
USING MODVTOC, 9
OPEN ASSOEXT
CLOSE ASSOEXT

EOJ RC=0

ASSOEXT DTFPH TYPEFLE=OUTPUT, DEVADDR=SYS001, DEVICE=DISK, MOUNTED=ALL
END

/ *

/&

* $$ EOJ

Note:

Thisjob causes VSE error message 4733D to be sent to the console, and the operator is asked
for aresponse. After the JCS has been validated, the operator response should be “ DELETE” .

160

ADADBS

Perform the ADADBS INCREA SE operation.

Run the new ADAFRM job to format the new extent. The ADAFRM job must specify the
FROMRABN parameter, as shown in the following example:

ADAFRM ASSOFRM SIZE=size,FROMRABN=rabn-number

—where “size” isthe number of cylinders or blocks by which the dataset is to be increased, and
“rabn-number” isthe first RABN in the new extent.

Start the Adabas nucleus.

Note:

In a VM environment, certain restrictions apply to multivolume, multiextent files. If these
restrictions are violated, VSE error 4n83l (invalid logical unit) may occur. Refer to the
appropriate IBM documentation for more information about these restrictions.

VM/ESA or zZ/VM Systems

Under VM/ESA or z/VM, there are two procedures for increasing the database. The first uses
the ADAMAINT and INCREASE EXECs; the second is a step-by-step manual procedure.

EXEC Procedure

1

Call the ADAMAINT EXEC to modify your CMS environment:

ADFnnnnn EXEC, DBnnnnn VOLUMES volume=vol-id, ...

ADAMAINT lets you add a new minidisk to an existing ASSO/DATA/WORKRKX, or define a
new ASSO/DATA/WORKRKX.

Call the INCREASE EXEC. This EXEC automatically doesa LINK, an ADADBS ADD, or an
ADADBS INCREASE (depending on what you specify in ADAMAINT), followed by an
ADAFRM to format the new area.

Manual Procedure

1

Define a new minidisk that is one cylinder (or pseudo-cylinder) larger than the required size.

161

162

Adabas Utilities Manual, Volume 1

Issue the FORMAT command

FORMAT cuu T nnn

—where “cuu” isthe virtua unit address of the new minidisk and “nnn” is“1” for aCKD device
or “20" for an FBA device. When prompted for avolume label, you must specify a unique name
of up to six alphanumeric characters.

Reserve the minidisk with the following command:

RESERVE file-name file-type T

—where “file-name”’ and “file-type” match the file name and file type used for the file on the
primary minidisk.

Execute the ADADBS INCREASE utility as described in this chapter.

Produce an ADAREP report, and find the first RABN in the new extent. This may be located
in the physical layout of the database. The RABN range on this extent indicates VOLSER
NUMBER “XXXXXX".

Add CP LINK statements for the new minidisk to the directory or PROFILE EXEC, asrequired.
Update any PROFILE EXECs or CP directory entries for any other virtual machines with
multiwrite access to this database (for example, the DBA machine).

For any EXECs that require it, modify the DATADEF statements for the file. If the standard
Software AG EXECs are being used, these DATADEF statements are found in the ADFnnnnn
EXEC, where “nnnnn” is the five-digit database ID.

To modify the DATADEF statement, locate the line

volx = vol-id

—where “volx” is“a’ for the Associator or “d” for DATA, and “vol-id” isthe previous volume
list. Change thislineto

volx = (vol-id,vo-label)

—where “vo-labdl” is the volume label specified while entering the FORMAT command in
step 2.

ADADBS

8. Execute the ADAFRM utility for the file as
ADAFRM xxxxFRM SIZE=size, FROMRABN=rabn-number

—where
XXXX is either ASSO or DATA
size is the size of the minidisk minus one cylinder (or psuedo-cylinder)

rabn-number isthe first RABN on the new extent as shown in the report created in step 6.

BS2000 Systems
Use the following procedure to increase the database on BS2000 systems:
1 Execute ADADBS INCREASE as described on page 157.
2. Produce a database report by running the ADAREP utility. Use the report to find the first RABN

for the new extent in the “Physical Layout of the Database” portion of the report. The RABN
range is indicated in the “VOLSER NUMBER” column.

3. Increase the dataset with the BS2000 “MODIFY—-FILE-ATTRIBUTE” command.
For example:

/MODIFY—FILE-ATTRIBUTE ADA99.ASSO,PUB(SPACE=REL (400))

Note:
In the old ISP format, this was performed by the “ FILE” command; for example,
/FILE ADA99.ASSO, SPACE=400.

4, Format the new space by running the ADAFRM dtility. An example for the space added in
step 4is

ADAFRM ASSOFRM SIZE=400B,FROMRABN=rabn-number

—where “rabn-number” specifies the first RABN shown on the new extent, as shown in the
report.

163

Adabas Utilities Manual, Volume 1

ISNREUSE : Reuse |SNs

The ISNREUSE function controls whether ISNs of deleted records may be reassigned to new
records.

ADADBS ISNREUSE FILE=file-number
MODE={ ON | OFF }
[INOUSERABEND]
[PASSWORD="password’]
[RESET]
[TEST]

Essential Parameters
FILE : File Number

FILE isthe number of thefile for which the ISNREUSE setting is to be changed. The checkpoint
file cannot be specified.

MODE : Reuse M ode

MODE causes the ISN reuse mode to be in effect. MODE=OFF causes Adabas not to reuse the
ISN of a deleted record for a new record. Each new record will be assigned the next higher
unused I1SN. MODE=ON indicates that Adabas may reuse the ISN of a deleted record. The
MODE parameter has no default; it must be specified.

Optional Parameters
NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

164

PASSWORD : File Password

ADADBS

PASSWORD specifies the file's security password, and is required if the file is

password-protected.

RESET : Reset | SN Pointer

The RESET parameter causes searches for an unused ISN to start at the beginning of the file.

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Note
that the validity of values and variables cannot be tested: only the syntax of the specified
parameters can be tested. See page 138 for more information on using the TEST parameter in

ADADBS functions.

Example

ISNs of deleted records in file 7 may be reassigned to new records.

ADADBS ISNREUSE FILE=7,MODE=ON

MODFCB : Modify File Parameters

The MODFCB function modifies various parameters for a non-system Adabas file.

ADADBS MODFCB

FILE=file-number
[ASSOPFAC=new-padding-factor]
[DATAPFAC=new-padding-factor]
[MAXDS=maximum-secondary-allocation]
[MAXNI=maximum-secondary-allocation]
[MAXUI=maximum-secondary-allocation]
[MAXRECL=maximum-compressed-record-length]
[INOUSERABEND]
[PASSWORD="password’]
[PGMREFRESH={YES | NO }]

[TEST]

165

Adabas Utilities Manual, Volume 1

Essential Parameter
FILE : File Number

FILE isthe number of the Adabas file to be modified. An Adabas system file cannot be specified.

Optional Parameters
ASSOPFAC / DATAPFAC : File Padding Factors

ASSOPFAC/DATAPFAC specify the padding factor (1-90) to be in effect for Associator and
Data Storage, respectively. Existing blocks retain their origina padding factor (see the
ADAORD utility).

MAXDS/MAXNI / MAXUI : Maximum Secondary Allocation

The maximum number of blocks per secondary extent alocation for the Data Storage
(MAXDS), the normal index (MAXNI), and the upper index (MAXUI).

The value specified must specify blocks, be followed by “B” (for example, MAXDS=8000B),
and cannot be more than 65535B.

If one of the parametersis either not specified or specifies “0B”, the maximum secondary extent
allocation for that component has no limit.

In al cases, however, Adabas enforces minimum secondary allocations for these parameters:

MAXDS=6B
MAXNI=6B
MAXUI=15B

If you specify a value lower than these minimum allocations, the minimum value is used.

MAXRECL : Maximum Compressed Record Length

The maximum compressed record length permitted for the file. The value specified should not
be less than the current maximum record size in the specified file.

166

ADADBS

NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

PASSWORD : File Password

This parameter is required if the file is password-protected.

PGMREFRESH : Program-generated File Refresh

The PGMREFRESH option determines whether a user program is allowed to perform a file
refresh operation by issuing a special E1 command. If the parameter is not specified, the option
remains in its current status: either on (YES) or off (NO).

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
page 138 for more information on using the TEST parameter in ADADBS functions.

Example
The following modifications are to be made for file 203; the Associator padding factor is set to

5, the Data Storage padding factor to 5, and the maximum Data Storage secondary extent
allocation to 100 blocks.

ADADBS MODFCB FILE=203,ASSOPFAC=5,DATAPFAC=5MAXDS=100B

167

Adabas Utilities Manual, Volume 1

NEWFIELD : Add New Field

The NEWFIELD function adds one or more fields to a file. The new field definition is added
to the end of the field definition table (FDT).

Note:

Although the definition of a descriptor field is independent of the record structure, note that if
a descriptor field is not ordered first in a record and logically falls past the end of the physical
record, the inverted list entry for that record is not generated for performance reasons. To
generate the inverted list entry in this case, it is necessary to unload short, decompress, and
reload thefile; or use an application programto order the field first for each record of the file.

NEWFIELD cannot be used to specify actual Data Storage data for the new field; the data can
be specified later using Adabas add/update or Natural commands.

When adding a field to an Adabas expanded file, the field must be added to each individual
component file. Each NEWFIELD operation on a component file returns a message that
confirms the change and condition code 4.

ADADBS NEWFIELD FILE=file-number
[FNDEF="Adabas-field-definition’]
[INOUSERABEND]
[PASSWORD="password’]
[SUBFN="name=parent-field(begin,end)’]
[SUPFN="name={parent-field(begin,end)},...]
[TEST]

Essential Parameter
FILE : File Number

168

FILE specifiesthe filein which the field to be added is contained. The file may not be an Adabas
system file.

ADADBS

Optional Parameters
FNDEF : Adabas Field Definition

FNDEF specifies an Adabas field (data) definition. One FNDEF statement is required for each
field to be added. The syntax used in constructing field definition entriesis

FNDEF='level,name[,length,format][,option,...]’

Each definition must adhere to the field definition syntax as described for the ADACMP utility
starting on page 66.

Note the following restrictions:

e A subdescriptor, superdescriptor, hyperdescriptor, or phonetic descriptor definition cannot be
specified.

e Text information or sequence numbers are not permitted.

. If you specify an occurrence number when adding an MU or PE field, it is ignored.
The following rules apply when you set the level number in the first FNDEF statement:
1 A level number 01 is always allowed.

2. A level number of 02 or higher means that this field is to be added to an existing group. If so,
the following rules apply:

e Thefield can be added if the group is a normal (not periodic) group;

. If the group is a PE, the field can be added only if the file control block (FCB) for the file does
not exist; that is, either the file was deleted with the KEEPFDT option, or the FDT was defined
using the Adabas Online System “Define FDT” function but the “ Define File” function has not
yet been run.

NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

169

Adabas Utilities Manual, Volume 1

PASSWORD : File Password

File password. This parameter is required if the file is password-protected.

SUBFN / SUPFN : Add Subfields or Superfields

These parameters may be used to add subfields and superfields. Each definition must adhere to
the definition syntax for sub/superfields as described for the ADACMP tility.

TEST : Test Syntax

This parameter tests the operation syntax without actually performing the operation. Only the
syntax of the specified parameters can be tested; not the validity of values and variables. See
page 138 for more information on using the TEST parameter in ADADBS functions.

Example

Group AB (consisting of fields AC and AX) is to be added to file 24.
ADADBS NEWFIELD FILE=24

ADADBS FNDEF="01,AB’
ADADBS FNDEF="02,AC,3,A,DE,NU’
ADADBS FNDEF="02,AX,5,P,NU’

170

ADADBS

ONLINVERT : Start Online Invert

The ONLINVERT function starts an online invert process.

ADADBS ONLINVERT FILE=file-number

{ FIELD="field-name [,option,...]" |
SUPDE="name [,UQ [,XI] I'=parent-field (begin,end),...” |
SUBDE="name [,UQ [,XI] =parent-field (begin,end)’ |
PHONDE="phonde-name (parent-field)’ |
HYPDE="nr,name,length,format [,options]=parent-field,..." |
COLDE="nr,name [,UQ [,XI] =parent-field’ }

[CODE=cipher-code]

[PASSWORD=password]

[NOUSERABEND]

[TEST]

[WAIT]

Essential Parameters
FILE : File Number

File is the number of the file for which the new descriptor isto be created. If a component file
of an expanded file chain is specified, the descriptor is added to al component files of that chain.

FIELD / SUBDE / SUPDE / PHONDE / HYPDE / COLDE : Define Descriptor

Exactly one of these parameters must be used to define the type of descriptor to be inverted. Only
one descriptor per file can be inverted at a time using the online invert function.

Use the FIELD parameter to define a field as descriptor; use the COLDE parameter for a
collation descriptor; the HYPDE parameter for a hyperdescriptor; PHONDE for a phonetic
descriptor; SUBDE for a subdescriptor; and SUPERDE for a superdescriptor.

FIELD specifies an existing field to be inverted. The field may be an elementary or
multiple-value field and may be contained within a periodic group (unless the field is defined
with the FI option).

If the descriptor is to be unique, specify “UQ” following the field name. A field in a periodic
group cannot be defined as a unique descriptor. If the uniqueness of the descriptor is to be
determined with the index (occurrence number) excluded, specify “XI1” as well.

171

Adabas Utilities Manual, Volume 1

When inverting a sub- or superfield, the respective SUBDE or SUPDE parameter must specify
the same parent fields that were specified when the field was created; otherwise, an error occurs.
Begin and end values are taken from the original field definitions.

If aparent field with the NU option is specified, no entries are made in the inverted list for those
records containing a null value for the field. For super- and hyperdescriptors, this is true
regardless of the presence or absence of values for other descriptor elements.

If a parent field is not initialized and logically fals past the end of the physical record, the
inverted list entry for that record is not generated for performance reasons. To generate the
inverted list entry in this case, it is necessary to unload short, decompress, and reload the file;
or use an application program to initialize the field for each record of the file.

See the ADACMP utility description starting on page 43 for detailed information about the
individual descriptor syntax, subparameter values, and coding.

Optional Parameters
CODE : Cipher Code

If the file specified with the FILE parameter is ciphered, an appropriate cipher code must be
supplied using the CODE parameter.

PASSWORD : File Password
If the file specified with the FILE parameter is security-protected, the file's password must be
supplied using the PASSWORD parameter.

NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” isdisplayed and
the utility terminates with condition code 20.

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

172

ADADBS

WAIT : Wait for End of Process

Specify WAIT if ADADBS isto wait for the end of the online process before proceeding either
with the next function or with termination.

If WAIT is not specified, ADADBS proceeds immediately after initiating the online process.

Example

Initiate an online process to make field AA of file 10 a descriptor, without waiting for the end
of this process.

ADADBS ONLINVERT FILE=10,FIELD=AA

ONLREORFASSO ;
Start Online Reorder Associator for Files

The ONLREORFASSO function starts an online process to reorder the Associator of the
specified files.

Notes:

1. Theonlinereorder process does not change the existing file extents but only reorganizes thefile's
index within these extents.

2. The online index reorder process dows not move index elements out of blocks that are full
(according to the Asso padding factor); it only moves elements into blocks that are not full.

3. Released index blocks are put into the unused RABN chain, which can be viewed using the
ADAICK ICHECK utility function.

ADADBS ONLREORFASSO FILE=file-number
[ASSOPFAC=asso-padding-factor]
[PASSWORD=password]
[NOUSERABEND]
[TEST]

[WAIT]

173

Adabas Utilities Manual, Volume 1

Essential Parameters
FILE : File Number
FILE specifies the file to which the parameters that follow in the statement sequence apply.

Severa files and their related parameters may be specified within one ONLREORFASSO
operation. In this case, the files are reordered in the specified sequence.

If a component file of an Adabas expanded file is specified, only that file's Associator is
reordered; this has no adverse effect on the other component files.

The Adabas checkpoint or security file number must not be specified.

Optional Parameters
ASSOPFAC : Associator Padding Factor

ASSOPFAC defines the Associator block padding factor, which is the percentage of each
Associator block not used during the reorder process. Specify a value in the range 1-90. The
number of bytes free after padding must be greater than the largest descriptor value plus 10.

If this parameter is omitted, the current padding factor in effect for the file is used.

PASSWORD : File Password

If the file is password-protected, use this parameter to specify the password.

NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility does not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” isdisplayed and
the utility terminates with condition code 20.

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

174

ADADBS

WAIT : Wait for End of Process

Specify WAIT if ADADBS isto wait for the end of the online process before proceeding either
with the next function or with termination.

If WAIT is not specified, ADADBS proceeds immediately after initiating the online process.

Example

Initiate an online process that reorders the Associator of file 10 first and then file 11. The
Associator padding factor of file 11 isto be 5 percent.

ADADBS ONLREORFASSO FILE=10
ADADBS FILE=11,ASSOPFAC=5

ONLREORFDATA : Start Online Reorder Datafor Files

The ONLREORFDATA function starts an online process to reorder the Data Storage of the
specified files.

Note:

The onlinereorder process does not change the existing file extents but only reorganizes the file's
Data Sorage records within these extents.

ADADBS ONLREORFDATA FILE=file-number
[DATAPFAC=data-padding-factor]
[SORTSEQ={ISN | de-name | physical-sequence}]
[PASSWORD=password]
[INOUSERABEND]
[TEST]

[WAIT]

175

Adabas Utilities Manual, Volume 1

Essential Parameters
FILE : File Number

FILE specifies the file to which the parameters that follow in the statement sequence apply.

Severd files and their related parameters may be specified within one ONLREORFDATA
operation. In this case, the files are reordered in the specified sequence.

If a component file of an Adabas expanded file is specified, only that file's Data Storage is
reordered; this has no adverse effect on the other component files.

The Adabas checkpoint or security file number must not be specified.

Optional Parameters
DATAPFAC : Data Storage Padding Factor

DATAPFAC specifies the Data Storage padding factor. The number specified represents the
percentage of each Data Storage block that remains unused when the file isreordered. A value
in the range 1-90 may be specified (see the ADALOD utility chapter starting on page 313 for
additional information about setting and using the Data Storage padding factor).

If this parameter is omitted, the current padding factor in effect for the file is used.

SORTSEQ : File Reordering Sequence

SORTSEQ determines the sequence in which the fileis processed. If this parameter is omitted,
the records are processed in physical sequence.

Note:
Records within a single Data Sorage block are not sorted according to the specified sequence.

If adescriptor is specified, thefileis processed in the logical sequence of the descriptor values.
Do not use a hyperdescriptor, a phonetic descriptor, a multiple-value field, or a descriptor
contained in a periodic group.

If ISN is specified, the file is processed in ascending SN sequence.

PASSWORD : File Password

176

If the file is password-protected, use this parameter to specify the password.

ADADBS

NOUSERABEND : Termination Without ABEND

TEST

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility does not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

. Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

WAIT : Wait for End of Process

Specify WAIT if ADADBS isto wait for the end of the online process before proceeding either
with the next function or with termination.

If WAIT is not specified, ADADBS proceeds immediately after initiating the online process.

Example

Initiate an online process that reorders the Data Storage of file 10 first, and then file 11. The Data
Storage padding factor of file 11 isto be 5 percent.

ADADBS ONLREORFDATA FILE=10
ADADBS FILE=11,DATAPFAC=5

177

Adabas Utilities Manual, Volume 1

ONLREORFILE :
Start Online Reorder Associator and Data for Files

The ONLREORFILE function starts an online process to reorder the Associator and Data
Storage of the specified files.

Note:
The onlinereorder process does not change the existing file extents but only reorganizes the file's
index and Data Storage records within these extents.

ADADBS ONLREORFILE FILE=file-number
[ASSOPFAC=asso-padding-factor]
[DATAPFAC=data-padding-factor]
[SORTSEQ={ISN | de-name | physical-sequence}]
[PASSWORD=password]

[INOUSERABEND]
[TEST]

[WAIT]

Essential Parameters
FILE : File Number

178

FILE specifies the file to which the parameters that follow in the statement sequence apply.

Severa files and their related parameters may be specified within one ONLREORFILE
operation. In this case, the files are reordered in the specified sequence.

If acomponent file of an Adabas expanded file is specified, only that file's Associator and Data
Storage is reordered; this has no adverse effect on the other component files.

The Adabas checkpoint or security file number must not be specified.

ADADBS

Optional Parameters
ASSOPFAC : Associator Padding Factor

ASSOPFAC defines the new Associator block padding factor, which is the percentage of each
Associator block not used during the reorder process. Specify avalue in the range 1-90. The
number of bytes free after padding must be greater than the largest descriptor value plus 10.

If this parameter is omitted, the current padding factor in effect for the file is used.

DATAPFAC : Data Storage Padding Factor

DATAPFAC specifies the new Data Storage padding factor. The number specified represents
the percentage of each Data Storage block that remains unused when the file is reordered. A
value in the range 1-90 may be specified (seethe ADAL OD utility chapter starting on page 313
for additional information about setting and using the Data Storage padding factor).

If this parameter is omitted, the current padding factor in effect for the file is used.

SORTSEQ : File Reordering Sequence

SORTSEQ determines the sequence in which the fileis processed. If this parameter is omitted,
the records are processed in physical sequence.

Note:
Records within a single Data Sorage block are not sorted according to the specified sequence.

If adescriptor is specified, thefileis processed in the logical sequence of the descriptor values.

Do not use a hyperdescriptor, a phonetic descriptor, a multiple-value field, or a descriptor
contained in a periodic group.

If ISN is specified, the file is processed in ascending SN sequence.

PASSWORD : File Password

If the file is password-protected, use this parameter to specify the password.

179

Adabas Utilities Manual, Volume 1

NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility does not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” isdisplayed and
the utility terminates with condition code 20.

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

WAIT : Wait for End of Process

Specify WAIT if ADADBS isto wait for the end of the online process before proceeding either
with the next function or with termination.

If WAIT is not specified, ADADBS proceeds immediately after initiating the online process.

Example

Initiate an online process that reorders the Associator and Data Storage of file 10 first, and then
file 11. The Associator padding factor of file 10 isto be 5 percent; the Data Storage padding
factor of file 11 isto be 10 percent.

ADADBS ONLREORFILE FILE=10,ASSOPFAC=5
ADADBS FILE=11,DATAPFAC=10

180

ADADBS

OPERCOM : Adabas Operator Commands

The OPERCOM function issues operator commands to the Adabas nucleus.

In an Adabas cluster environment, OPERCOM commands can be directed to a single cluster
nucleus or to all active nuclei in the cluster. If a particular nucleusis not specified, the command
defaults to the local nucleus.

Adabas issues a message to the operator, confirming command execution.

ADADBS OPERCOM operator-command
[NOUSERABEND]
[NUCID={ nuc-id | 0}]
[TEST]

In this section, the discussion of the individual operator commands follows the discussion of the
optional parameters, since some of the operator commands behave differently when issued in
an Adabas cluster environment.

Using OPERCOM Commandsin Cluster Environments

Some ADARUN parameters are “global”; that is, they must have the same values for al nuclei
in a cluster. Of these, some are set at session initialization and cannot be changed. Others can
be modified on a running system. OPERCOM commands that change these modifiable global
parameter values are handled in a specia way in cluster environments.

If an Adabas cluster nucleus changes one or more “global” parameters, that nucleus acquires
a “parameter change lock”, makes the changes in its local parameter area, informs the other
cluster nuclei of the changes and waits for areply. The other cluster nuclel make the changes
in their own local parameter areas and send an “acknowledge” message.

Five OPERCOM commands use the GLOBAL option to operate across all active nuclel in a
cluster: ADAEND, CANCEL, FEOFCL, FEOFPL, and HALT. For example:

ADADBS OPERCOM ADAEND, GLOBAL

All other OPERCOM commands use the NUCID=0 option to operate across all active nuclei
in the cluster.

181

Adabas Utilities Manual, Volume 1

Optional Parameters
GLOBAL : Operate Across All Active Cluster Nuclei

Five OPERCOM commands use the GLOBAL option to operate across all active nuclel in a
cluster: ADAEND, CANCEL, FEOFCL, FEOFPL, and HALT. For example:

ADADBS OPERCOM ADAEND, GLOBAL

All other OPERCOM commands use the NUCID=0 option to operate across all active nuclei
in a cluster.

NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” isdisplayed and
the utility terminates with condition code 20.

NUCID : Cluster Nucleus|D

Any nucleus running in an Adabas nucleus cluster is allowed to run Adabas utilities such as
ADADBS.

With certain exceptions, the NUCID parameter allows you to direct the ADADBS OPERCOM
commands to a particular nucleus in the cluster for execution, just as though the command had
been issued by alocally run ADADBS OPERCOM operation. You can route most OPERCOM
commands to al nuclei in acluster by specifying NUCID=0.

If NUCID is not specified in a cluster environment, the command is routed to the local nucleus.

TEST : Test Syntax

182

This parameter tests the operation syntax without actually performing the operation. Only the
syntax of the specified parameters can be tested; nor the validity of values and variables. See
page 138 for more information on using the TEST parameter in ADADBS functions.

ADADBS

Operator Commands
ADAEND

ADAEND [GLOBAL]

This command terminates an Adabas session normally. No new users are accepted after this
command has been issued. ET logic updating is continued until the end of the current logical
transaction for each user. After al activity has been completed as described above, the Adabas
session is terminated.

In nucleus cluster environments, the GLOBAL option can be used to terminate the Adabas
session in all active cluster nuclel.

ALOCKF

Note:
Not currently available for use with Adabas Parallel Services cluster nuclei.

ALOCKF=file-number

Lock afilein advance to ensure that an EXU, EXF, or UTI user will have exclusive control of
the specified file. The advance-lock prevents new transactions from using the file. Once all
current users have stopped using the file, the exclusive-control user has the lock. Until then, the
exclusive-control user must wait.

To remove the advance lock without running the utility, see the RALOCKF command.

This command is not available
e insingle user mode; or

e for aread-only nucleus.

183

Adabas Utilities Manual, Volume 1

CANCEL

CANCEL [,GLOBAL]

Cancel the Adabas session immediately. All command processing is immediately suspended.
A pending autorestart is in effect which in turn causes the autorestart routine to be executed
during the initialization of the next Adabas session.

In nucleus cluster environments, the GLOBAL option can be used to cancel the Adabas session
in al active cluster nuclei.

CLOGMRG

CLOGMRG={ YES|NO }

Switches automatic command log merging (ADARUN CLOGMRG parameter value) on or off
in nucleus cluster environments.

The CLOGMRG command is global by definition and affects all nuclei in the cluster. If a
NUCID is specified, it is ignored.

CLUFREEUSER

184

CLUFREEUSER [, TNA=max-time][,UID=userid][, FORCE][, GLOBAL][,NUCID=nucid]

Note:

The CLUFREEUSER command is only valid in cluster environments. It can be issued against
the local nucleus only or, with the GLOBAL option, against all active and inactive nuclel in the
cluster.

ADADBS

Delete |eftover user table elements (UTES) in common storage that are no longer associated with
user queue elements (UQES) in a nucleus where

TNA

uibD

FORCE

is a decimal number specifying the timeout value in seconds.

UTEs that are not used during the time specified may be deleted if other con-
ditions are fulfilled.

If TNA is not specified, UTES may be deleted without regard to their recent
use.

is a character string or hexadecimal byte string as follows:

cceeeece —where the argument is 1-8 letters, digits, or em-
bedded '— signs without surrounding apostrophes.
' cceeeecc —where the argument is 1-8 characters with sur-

rounding apostrophes.

X7 XXXXXXXXXXXXXXXX —where the argument is an even number of 2-16
hexadecimal digits enclosed by X' °.

A character string must be enclosed in apostrophes if it contains characters
other than letter, digits, or embedded ' signs. If a specified character string is
less than 8 characters long, it is implicitly padded with blanks. If a specified
hexadecimal string is shorter than 16 hexadecimal digits, it is implicitly
padded with binary zeros.

If the last 8 bytes of a user’s 28-byte communication ID match a specific user
ID or user ID prefix, that user’s UTE may be deleted if other conditions are
fulfilled.

If UID not specified, UTEs may be deleted regardless of their user IDs.

Leftover UTEs are to be deleted even if the users are due a response code 9,
subcode 20.

If FORCE is not specified, such UTES are not deleted.

Before using the FORCE parameter, ensure that the users owning the UTEs to
be deleted will not expect any of their transactions to remain open.

185

CT

DAUQ

DCQ

186

Adabas Utilities Manual, Volume 1

GLOBAL Leftover UTEs throughout the Adabas cluster are to be deleted if they are no
longer associated with UQEs and are eligible according to the other specified
parameters.

Additionally and subject to the other rules, |eftover UTEs are deleted if their
assigned nuclei have terminated since their last use.

If GLOBAL is not specified, only UTES assigned to the local nucleus and used
since the nucleus start are eligible for deletion.

NUCID is used to indicate that the command is to be processed by a specific nucleus
in the cluster.

CT= timeout-limit

Dynamically override the ADARUN CT parameter value; that is, the maximum number of
seconds that can elapse from the time an Adabas command has been completed until the results
are returned to the user through interregion communication (which depends on the particular
operating system being used). The minimum setting is 1; the maximum is 16777215.

In nucleus cluster environments, the CT command is global by definition and affects all nuclei
in the cluster. If aNUCID is specified, it isignored.

Display the user queue element (UQE) of each user who has executed at least one Adabas
command within the last 15 minutes.

In nucleus cluster environments, the NUCID=0 option can be used to display information for
all active cluster nuclei. Information is displayed for each nucleus, one after the other.

Display al posted command queue elements (CQES). Each CQE's user ID, job name, and buffer
length is displayed.

In nucleus cluster environments, the NUCID=0 option can be used to display information for
all active cluster nuclei. Information is displayed for each nucleus, one after the other.

ADADBS

DDIB
Display data integrity block (DIB). This block contains entriesindicating which Adabas utilities
are active and the resources being used by each utility. The DDIB function can be performed
with either an active or an inactive nucleus.
In nucleus cluster environments, the information displayed by the DDIB command is global;
the command can be run on any nucleus.
DDSF
Display Adabas Delta Save Facility (DSF) status. The Adabas nucleus displays the DSF status
on the operator console as well asin the ADADBS job protocol.
This function is only available if the nucleus is run with the parameter ADARUN DSF=YES.
In nucleus cluster environments, the information displayed by the DDSF command is global;
the command can be run on any nucleus.
DFILES
DFILES={n | n1-nx | n1,n2,n3,n4,n5 }
Displays the number of access, update, EXU, and UTI users for the specified files. User types
are totaled for each file, and are listed by file.
In nucleus cluster environments, the NUCID=0 option can be used to display information for
all active cluster nuclel. Information is displayed for each nucleus, one after the other.
DFILUSE

DFILUSE-= file-number

Displays the count of commands processed for the specified file so far during the current session.

In nucleus cluster environments, the NUCID=0 option can be used to display information for
all active cluster nuclel. Information is displayed for each nucleus, one after the other.

187

Adabas Utilities Manual, Volume 1

DHQ

Display up to five hold queue elements.

DHQA
Display all hold queue elements (HQES).

In nucleus cluster environments, the NUCID=0 option can be used to display information for
all active cluster nuclei. Information is displayed for each nucleus, one after the other.

DLOCKF
Display locked files.

In nucleus cluster environments, the NUCID=0 option can be used to display information for
all active cluster nuclei. Information is displayed for each nucleus, one after the other.

DNC

Display the number of posted command queue elements (CQES).

In nucleus cluster environments, the NUCID=0 option can be used to display information for
all active cluster nuclei. Information is displayed for each nucleus, one after the other.

DNH

Display the number of 1SNs currently in the hold queue.

In nucleus cluster environments, the NUCID=0 option can be used to display information for
all active cluster nuclei. Information is displayed for each nucleus, one after the other.

DNU

Display the number of current users.

In nucleus cluster environments, the NUCID=0 option can be used to display information for
all active cluster nuclei. Information is displayed for each nucleus, one after the other.

188

ADADBS

DONLSTAT

Note:
Not currently available for use with Adabas Parallel Services cluster nuclei.

Display status of each active reorder or invert online process together with the process ID.

In nucleus cluster environments, the NUCID=0 option can be used to display information for
all active cluster nuclei. Information is displayed for each nucleus, one after the other.

DPARM

Display the Adabas session parameters currently in effect.

DRES

Display the allocated pool space and the highest use level (‘high water mark’) reached so far
during the current session by record count and by percent for the following resources:

e attached buffers (AB) — current allocation not supported

e command queue (CQ)

e format pool (FP)

e hold queue (HQ)

e pool for the table of ISNs (TBI)

e pool for the table of sequential commands (TBQ or TBLES)
e user queue (UQ)

e unique descriptor pool (DUQPOOL)

e security pool

e user queue filelist pool

e work pool (WP)

e pool for global transaction IDs (X1Ds; nonzero only with Adabas Transaction Manager)

e cluster block update “redo” pool (nonzero only for a cluster nucleus with ADARUN LRDP
greater than zero)

The actual values are displayed in nucleus message ADAN28 described in the Adabas Messages
and Codes manual.

189

Adabas Utilities Manual, Volume 1

DSTAT

Display the current Adabas nucleus operating status.

DTH
Display thread status.
DUQ
Display up to five active and inactive user queue elements.
DUQA
Display all user queue elements (UQEsS).
In nucleus cluster environments, the NUCID=0 option can be used to display information for
all active cluster nuclel. Information is displayed for each nucleus, one after the other.
DUQE
DUQE=X'user-id’
Display a user queue element for the specified Adabas-assigned user ID as follows:
DUQE=X'A3CF2’
The user ID must be entered in hexadecimal format. Do not use a job name for the user ID.
In nucleus cluster environments, NUCID must always be specified because the user ID is not
unique to the cluster.
DUUQE

Display utility user queue elements (UQEsS).

In nucleus cluster environments, the NUCID=0 option can be used to display information for
all active cluster nuclei. Information is displayed for each nucleus, one after the other.

190

ADADBS

FEOFCL
FEOFCL [,GLOBAL]

Close the current dual or multiple command log and switch to the other dual or another multiple
command log. This command is valid only if dual or multiple command logging is in effect.

In nucleus cluster environments, the GLOBAL option can be used to switch the dual or multiple
command log in all cluster nuclei at the same time.

FEOFPL
FEOFPL [GLOBAL]

Close the current dual or multiple data protection log and switch to the other dual or another
multiple protection log. This command isvalid only if dual or multiple data protection logging
isin effect.

In nucleus cluster environments, the GLOBAL option can be used to switch the dual or multiple
protection log in all cluster nuclei at the same time.

HALT
HALT [(GLOBAL]
Stop Adabas session. A BT (backout transaction) command is issued for each active ET logic
user. The Adabas session is then terminated; no dumps are produced.
In nucleus cluster environments, the GLOBAL option can be used to halt the Adabas session
in al active cluster nuclei.
LOCKF
LOCKF= file-number
Lock the specified file. The specified file will be locked at all security levels.
LOCKU

LOCKU= file-number

Lock the specified file for al non-utility use. Adabas utilities can use the file normally.

191

Adabas Utilities Manual, Volume 1

LOCKX

LOCKX= file-number

Lock the specified file for all users except EXU or EXF users. EXU and EXF users can use the
file normally. The lock is released automatically when an EXU user issues an OP command.

LOGGING

Start command logging.

LOGxx
Begin logging as indicated by “xx” for each command logged where “xx” is one of the
following:
CB the Adabas control block
FB the Adabas format buffer
IB the Adabas ISN buffer
IO Adabas /O activity
RB the Adabas record buffer
SB the Adabas search buffer
UX user data passed in the seventh parameter of the Adabas parameter list
VB the Adabas value buffer
NOLOGGING
Stop or prevent command logging.
NOL OGxx

Stop or prevent logging of “xx” where “xx” is one of the following:

CB
FB
IB

192

the Adabas control block
the Adabas format buffer
the Adabas ISN buffer

ADADBS

IO Adabas /O activity

RB the Adabas record buffer

SB the Adabas search buffer

UX user data passed in the seventh parameter of the Adabas parameter list
VB the Adabas value buffer

ONLRESUME

Note:
Not currently available for use with Adabas Parallel Services cluster nuclei.

ONLRESUME=X'identifier’

Resume a previously suspended online reorder or invert process.

In acluster environment, NUCID must always be specified because the online process ID is not
unique to the cluster.

ONLSTOP

Note:
Not currently available for use with Adabas Parallel Services cluster nuclei.

ONLSTOP=X'identifier

Stop an online reorder or invert process cleanly. The process continues up to its next interrupt
point in order to produce a consistent state, and then terminates after performing all necessary
cleanup.

In acluster environment, NUCID must always be specified because the online process ID is not
unique to the cluster.

ONL SUSPEND

Note:
Not currently available for use with Adabas Parallel Services cluster nuclei.

ONLSUSPEND=X'identifier’

Suspend an online reorder or invert process. The process continues up to its next interrupt point
in order to produce a consistent state, performs a command throwback, and enters a state where
it cannot be selected for processing. This command is useful if the online processis consuming
too much of the nucleus resources.

193

Adabas Utilities Manual, Volume 1

In acluster environment, NUCID must always be specified because the online process ID is not
unique to the cluster.

RALOCKF

Note:
Not currently available for use with Adabas Parallel Services cluster nuclei.

RALOCKF=n
Remove the advance lock on the specified file (see ALOCKF command) without running the

utility.

RALOCKFA

Note:
Not currently available for use with Adabas Parallel Services cluster nuclei.

Remove the advance lock on al filesfor which it has been set (see ALOCKF command) without

running the utility.

RDUMPST

Terminate online dump status. This command is normally used if online execution of the
ADASAV utility has terminated abnormally.

READONLY

Note:
Not currently available for use with Adabas Parallel Services cluster nuclei.

READONLY={ YES|NO }

Switches READONLY status on or off.

In nucleus cluster environments, the READONLY command is global by definition and affects
al nuclel in the cluster. If aNUCID is specified, it is ignored.

194

ADADBS

REVIEW

STOPF

STOPI

STOPU

Note:
Not currently available for use with Adabas Parallel Services cluster nuclei.

REVIEW={NO | LOCAL | hub-id}

Deactivate Adabas Review; change from hub mode to local mode; specify or change the Adabas
Review hub with which a nucleus communicates.

STOPF= file-number[, PURGE]

Stop users who are using the specified file. Only one file number can be specified. This
command does not stop EXF or UTI users.

The optional PURGE parameter removes stopped user queue elements from the user queue
when ADARUN OPENRQ=NO was specified. The following is an example of using the
PURGE parameter:

ADADBS OPERCOM STOPF=5,PURGE

STOPI= time [,PURGE]

Stop users who have not executed a command during the past “time” (in seconds). This
command does not stop EXF or UTI users.

The optional PURGE parameter removes stopped user queue elements from the user queue
when ADARUN OPENRQ=NO was specified. The following is an example of using the
PURGE parameter:

ADADBS OPERCOM STOPI=3600,PURGE

STOPU={ X'user-id’| job-name }

Note:
The STOPU=X userid’ command is not allowed for online ADAORD or ADAINV processes. See
the ONLSTOP=X'identifier ' command instead.

195

SYNCC

TNAuU

TT

196

Adabas Utilities Manual, Volume 1

Stop the user with the Adabas-assigned user ID (in the form shown in the display commands),
or stop all users with the job “job-name’”.

STOPU clearsinactive or timed-out users, and deletes the user’s user queue element (UQE). If
the program/user isan ET logic user, isnot in ET status, and has not been stopped before STOPU
isissued, Adabas backs out all updates made by the transaction to this point and releases all held
records. If the transaction continues, only those changes following the STOPU are completed.

The user ID must be specified in hexadecimal format; for example:

STOPU=X'A3CF2’

In acluster environment, NUCID must always be specified because the user ID is not unique
to the cluster.

Force resynchronization of all ET users on the nucleus. The nucleus waits for al ET users to
reach ET status before continuing.

TNAu= time
Set non-activity time limit (in seconds) for users where “u” is one of the following:

A for access-only (ACC) users

E for ET logic users

X for exclusive control (EXF/EXU) users

If specified, “time” must be a value greater than zero; it overrides the ADARUN value.

In nucleus cluster environments, the TNAu commands are global by definition and affect all
nuclei in the cluster. If aNUCID is specified, it is ignored.

TT=time

Set transaction time limit (in seconds) for ET logic users. If specified, this value must be greater
than zero; it overrides the ADARUN value.

ADADBS

In nucleus cluster environments, the TT command is global by definition and affects all nuclei
in the cluster. If aNUCID is specified, it isignored.

UNLOCKF

UNLOCKF-= file-number

Unlock the specified file and restore its usage to the prelocked status.

UNLOCKU

UNLOCKU-= file-number

Unlock the specified file for utility use and restore it to its prelocked status for non-utility users.

UNLOCKX

UNLOCKX= file-number

Unlock the specified file and restore its usage to the prelocked status.

UTIONLY

Note:
Not currently available for use with Adabas Parallel Services cluster nuclei.

UTIONLY={ YES|NO }

Switch UTIONLY status on or off.

In nucleus cluster environments, the UTIONLY command is global by definition and affects all
nuclei in the cluster. If aNUCID is specified, it is ignored.

197

Adabas Utilities Manual, Volume 1

PRIORITY : Change User Priority

The PRIORITY function may be used to set or change the Adabas priority of a user. A user’s
priority can range from O (the lowest priority) to 255 (the highest priority).

The user isidentified by the same user ID provided in the Adabas control block (OP command,
additions 1 field).

ADADBS PRIORITY USERID='user-id’
[NOUSERABEND)]
[PRTY={n|255}]
[TEST]

Essential Parameter
USERID : User ID

The user ID in the checkpoint file of the user for which priority isto be changed. If arecord for
this user does not exist, a new one is added to the checkpoint file.

Optional Parameters
NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

PRTY : User Priority

The priority to bein effect for the user. A value in the range O for lowest priority to 255 for the
highest priority may be specified. The default is 255. This value will be added to the operating
system priority by the interregion communications mechanism.

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
page 138 for more information on using the TEST parameter in ADADBS functions.

198

ADADBS

Example
ADADBS PRIORITY USERID="USER24’,PRTY=7

Set the priority assignment for the user with the user ID “USER24” to 7.

RECOVER : Recover Space

The RECOVER function recovers space alocated by rebuilding the free space table (FST).
RECOVER subtracts file, DSST, and aternate RABN extents from the total available space.

ADADBS RECOVER [NOUSERABEND]
[TEST]

Optional Parameters
NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.

Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
page 138 for more information on using the TEST parameter in ADADBS functions.

199

Adabas Utilities Manual, Volume 1

REFRESH : Set File to Empty Status

The REFRESH function sets the file to O records loaded; sets the first extent for the address
converter, Data Storage, normal index, and upper index to “empty” status; and deallocates other
extents.

When the REFRESH function completes successfully, any locks previously set with the
operator commands LOCKU or LOCKF are reset.

ADADBS REFRESH FILE=file-number
[NOUSERABEND]
[PASSWORD="password’]
[TEST]

Essential Parameter
FILE : File Number

FILE specifies the file that is to be set to “empty” status.

Optional Parameters
NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

PASSWORD : File Password

This parameter is required if the file is password-protected.

TEST : Test Syntax

This parameter tests the operation syntax without actually performing the operation. Only the
syntax of the specified parameters can be tested; not the validity of values and variables. See
page 138 for more information on using the TEST parameter in ADADBS functions.

200

ADADBS

Example

File 116 is to be set to empty status.
ADADBS REFRESH FILE=116

REFRESHSTATS : Refresh Statistical Values

The REFRESHSTATS function resets statistical values maintained by the Adabas nucleus for
its current session. Parameters may be used to restrict the function to particular groups of
statistical values.

When you invoke REFRESHSTATS, Adabas automatically writes the nucleus shutdown
statistics to DD/PRINT.

| mportant:

Refreshing Adabas statistical values affects the corresponding Adabas Satistics Facility (ASF)
field values. These values, which normally reflect the period from the start of the nucleus, will
then refer to the time after the last refresh. ASF users may therefore find it useful to store the
nucleus records with the appropriate AS- function before refreshing the values.

ADADBS REFRESHSTATS [ALL]

[CMDUSAGE]
[COUNTERS]
[FILEUSAGE]

[NUCID=nucid]
[NOUSERABEND]
[POOLUSAGE]
[THREADUSAGE]

Optional Parameters
ALL : All Statistical Values

The ALL keyword may be specified as an abbreviation for the combination of CMDUSAGE,
COUNTERS, FILEUSAGE, POOLUSAGE, and THREADUSAGE.

If none of the option keywords is specified, ALL is the default option.

201

Adabas Utilities Manual, Volume 1

CMDUSAGE : Command Usage Counters
The CMDUSAGE parameter is specified to reset the counters for Adabas direct call commands
such asLx, Sx, or AL

COUNTERS: Frequency Counters

The COUNTERS parameter is specified to reset the counter fields for local or remote calls,
format tranglations, format overwrites, Autorestarts, protection log switches, buffer flushes, and
command throw-backs.

FILEUSAGE : Count of Commands Per File

The FILEUSAGE parameter is specified to reset the count of commands for each file.

NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

NUCID : Cluster Nucleus|D

Any nucleus running in an Adabas nucleus cluster is allowed to run Adabas utilities such as
ADADBS. The NUCID parameter allows you to direct the ADADBS REFRESHSTATS
function to a particular nucleusin the cluster for execution, just as though the command had been
issued by alocally run ADADBS REFRESHSTATS operation.

If you specify NUCID=0, the statistical values are refreshed for all active nuclei in the cluster.

POOLUSAGE : High-Water Marksfor Nucleus Pools

The POOLUSAGE parameter is specified to reset the high-water marks for the nucleus pools
such as the work pool, the command queue, or the user queue.

THREADUSAGE : Count of Commands Per Thread

The THREADUSAGE parameter is specified to reset the count of commands for each Adabas
thread.

202

ADADBS

Example

File 116 is to be set to empty status.
ADADBS REFRESHSTATS CMDUSAGE,POOLUSAGE,NUCID=3

After the shutdown statistics for the Adabas cluster nucleus with NUCID=3 are written to
DD/PRINT, the command counters and the pool high-water marks for the nucleus are reset.

REL EASE : Release Descriptor

The RELEASE function releases a descriptor from descriptor status.

This function results in the release of all space currently occupied in the Associator inverted list
for this descriptor. This space can then be reused for this file by reordering or ADALOD
UPDATE. No changes are made to Data Storage.

When releasing descriptor space for an Adabas expanded file, perform the RELEASE function
for each individual component file of the expanded file. Each RELEASE operation on a
component file causes a message that confirms the change, and returns condition code 4.

ADADBS RELEASE FILE=file-number
DESCRIPTOR="name’
[NOUSERABEND]
[PASSWORD="password’]
[TEST]

Essential Parameters
FILE : File Number

FILE specifies the file that contains the descriptor to be released. The file cannot be an Adabas
system file.

203

Adabas Utilities Manual, Volume 1

DESCRIPTOR : Descriptor to Be Released

DESCRIPTOR specifies the descriptor to be released. Any descriptor type can be specified. A
descriptor currently being used as the basis for file coupling cannot be specified. If the descriptor
being released is an ADAM descriptor, the file is no longer processed as an ADAM file.

Optional Parameters
NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

PASSWORD : File Password

This parameter is required if the file is password-protected. Specify the password between
apostrophes (').

TEST : Test Syntax
The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
page 138 for more information on using the TEST parameter in ADADBS functions.
Example

ADADBS RELEASE FILE=31,DESCRIPTOR="AA’

Descriptor AA in file 31 is released from descriptor status.

204

ADADBS

RENAME : Rename File/Database

The RENAME function may be used to change the name assigned to a file or database.

ADADBS RENAME NAME="name’
[FILE=file-number]
[INOUSERABEND]
[PASSWORD="password’]
[TEST]

Essential Parameter
NAME : New File Name

NAME is the new name to be assigned to the file. It is specified between apostrophes (for
example, 'RESERVATIONS'). A maximum of 16 characters can be used.

Optional Parameters
FILE : File Number

FILE is the number of the file to be renamed: if specified as zero or omitted, the database is
renamed.

NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” isdisplayed and
the utility terminates with condition code 20.

PASSWORD : File Password

The password of the file. This parameter is required if the file is password-protected.

205

Adabas Utilities Manual, Volume 1

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
page 138 for more information on using the TEST parameter in ADADBS functions.

Examples

The name of file 2 isto be changed to “INVENTORY”.
ADADBS RENAME FILE=2,NAME="INVENTORY’

The database is renamed to “RESERVATIONS’.
ADADBS RENAME NAME="RESERVATIONS’,FILE=0

RENUMBER : Change File Number

The RENUMBER function changes the number of an Adabas file.

ADADBS RENUMBER FILES=current-number, new-number
[INOUSERABEND]
[TEST]

Essential Parameter
FILES: Current File Number, New File Number

The number currently assigned to the file, and the new number to be assigned to thefile. If the
new number is assigned to another file, the RENUMBER function will not be performed.

An Adabas system file cannot be used. The file may not be security-protected, may not be
coupled to ancther file, and may not be part of an expanded file.

Optional Parameter
NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

206

ADADBS

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” isdisplayed and
the utility terminates with condition code 20.

TEST : Test Syntax
The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
page 138 for more information on using the TEST parameter in ADADBS functions.
Example

The file number for file 4 is to be changed to 40.
ADADBS RENUMBER FILES=4,40

RESETDIB : Reset Entriesin Active Utility List

The RESETDIB function resets entries in the active utility list (that is, the data integrity block
or DIB).

Adabas maintains alist of the files used by each Adabas utility in the DIB. The DDIB operator
command (or Adabas Online System) may be used to display this block to determine which jobs
are using which files. A utility removes its entry from the DIB when it terminates normally. If
a utility terminates abnormally (for example, thejob is cancelled by the operator), the files used
by that utility remain “in use”. The DBA may release any such files with the RESETDIB
function.

Note:
The RESETDIB function can be executed either with or without an active nucleus. To remove

a DIB from an abended ADAORD REORDB, REORDATA, REORASSO, ADADBSRESETDIB
has to run without an active nucleus.

JOBNAME-="job-name’ [IDENT=identifier]
IDENT=identifier

[NOUSERABEND]
[TEST]

ADADBS RESETDIB {

207

Adabas Utilities Manual, Volume 1

Essential Parameters
JOBNAME : Job Name

This parameter specifies the name of the job whose entry isto be reset. If it is not unique, the
IDENT parameter must also be specified.

IDENT : Utility Execution Identifier

A unique number that identifies a utility execution. It may be specified alone or to qualify ajob
name when the same name has been used for various utility executions. The identifier may be
obtained using the operator command DDIB or Adabas Online System.

Optional Parameters
NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” isdisplayed and
the utility terminates with condition code 20.

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
page 138 for more information on using the TEST parameter in ADADBS functions.

Examples

The entry in the DIB block for job “JOB1” isto be deleted.
ADADBS RESETDIB JOBNAME="JOB1’

The entry in the DIB block for “JOB2” with IDENT=127 is to be deleted.
ADADBS RESETDIB JOBNAME="JOB2',IDENT=127

208

ADADBS

TRANSACTIONS : Suspend and Resume Transactions

The TRANSACTIONS function may be used to suspend and resume update transaction
processing; that is, to reach a quiesced state that could be a recoverable starting point.

SUSPEND
[TTSYN={time-available-to-sync | ADARUN-TT}]
[TRESUME=({time-until-resume | 120 }]
RESUME

[NOUSERABEND)]
[TEST]

ADADBS TRANSACTIONS

Once the SUSPEND function has been submitted, new update transactions are not held in the
user queue but in the command queue. Executing transactions are allowed to finish if they can
do so within the time alotted by the TTSYN parameter. Any transactions that exceed thistime
are backed out. In a cluster environment, all cluster nuclei are likewise quiesced.

Once the quiesce is successful, the buffers are flushed for all nuclei so that the DASD files are
current with the content of the buffers. A checkpoint SYNC-73 is written and ADADBS is
notified.

At this point, the user may execute a non-Software AG fast backup product such as IBM’s
FlashCopy or StorageTek’s SnapShot to “COPY™ off the database; that is, copy pointers to the
data created by the fast backup product in the electronic memory of the array storage device.

Warning:

Software AG does not recommend using such a database fastcopy as a substitute for a regular
Software AG database (or delta) save. Not only does Software AG have no control over the
datasets that are included in the database fastcopy, but it also cannot vouch for the success of
the fastcopy. Moreover, delta saves cannot sensibly be run on a copy of the database, asthe DS+
status change effected by the delta save would occur on the database copy instead of the
original.

If the COPY completes before the TRESUME timeout and the RESUME function isissued, the
nucleus writes a SYNS-74 checkpoint, leaves the suspended state and resumes update
processing. The database was in a valid state over the whole duration of the COPY process.

209

Adabas Utilities Manual, Volume 1

If the COPY does not complete before the TRESUME timeout, Adabas automatically leaves
the suspended state and resumes update processing. If the RESUME function is issued
subsequently, Adabas rejects it with aresponse code and ADADBS terminates abnormally with
an error message. This means that whatever COPY has been produced while update processing
was suspended isinvalid and must not be used, because Adabas may have resumed updating the
database while the COPY process was still in progress.

If the so-created copy of the database is used for recovery, removing the need to restore the
database as of thetime of the COPY, the subsequent regenerate should be started at the SYNC-73
checkpoint written at the end of the SUSPEND function.

I mportant:

In a job wherea SUSPEND function is followed by other job steps and then by a RESUME
function, none of the job steps in between should be update-type commands or functions;
otherwise, job execution will stall until the nucleus times out the suspended state.

Essential Parameters
SUSPEND : Suspend Transactions and Quiesce the Database

Use this parameter to suspend update transaction processing and quiesce the database.

RESUME : Resume Transaction Processing that was Previously Suspended

210

Use this parameter to resume update transaction processing that was previously suspended. If
this parameter is used while Adabas is not in a suspended state or is no longer in a suspended
state, this function terminates with an error.

ADADBS

Optional Parameters
TRESUME

Use this parameter to specify the amount of time in seconds the system is to remain quiesced
after being suspended before the nucleus automatically resumes normal update transaction
processing. If this parameter is not specified, the default is 120 seconds and the maximum is
86400 seconds or 24 hours. The count begins when the nucleus has been successfully quiesced.

TTSYN

Use this parameter to specify the maximum amount of time the nucleusisto wait for al ET users
to reach ET status before it forcibly ends and backs out update transactions that are still running
in order to quiesce the system. If this parameter is not specified, the default is the ADARUN
TT value.

NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” isdisplayed and
the utility terminates with condition code 20.

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
page 138 for more information on using the TEST parameter in ADADBS functions.

Example
Quiesce a database allowing 300 seconds for the currently running update transactions to finish

and 150 seconds thereafter for the suspension to last before Adabas automatically resumes
normal processing:

ADADBS TRANSACTIONS SUSPEND TTSYN=300,TRESUME=150

211

Adabas Utilities Manual, Volume 1

UNCOUPLE : Uncouple Files

The UNCOUPLE function is used to eliminate the coupling relationship between two files.

ADADBS UNCOUPLE FILES=number, number
[INOUSERABEND]
[PASSWORD="password’]
[TEST]

Essential Parameter
FILES: Filesto Be Uncoupled

FILES specifies the two files to be uncoupled.

Optional Parameters
NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

PASSWORD : File Password

PASSWORD specifies the security password for one or both files, and is required if either of
the files is password-protected. If both files are password-protected, the password applies to
both files. The password must be enclosed in single quotation marks.

TEST : Test Syntax

This parameter tests the operation syntax without actually performing the operation. Only the
syntax of the specified parameters can be tested; not the validity of values and variables. See
page 138 for more information on using the TEST parameter in ADADBS functions.

212

ADADBS

Example

Files 62 and 201 are to be uncoupled. One or both are protected with the password “PAIR05".
ADADBS UNCOUPLE FILES=62,201,PASSWORD="PAIR05’

JCL/JCS Requirements and Examples

This section describes the job control information required to run ADADBS with BS2000,
0S/390 or zZ/OS, VM/ESA or z/VM, and V SE/ESA systems, and shows examples of each of the
job streams.

Collation with User Exit

If acollation user exit isto be used during ADADBS ONLINVERT execution, the ADARUN
CDXnn parameter must be specified for the utility run.

Used in conjunction with the universal encoding support (UES), the format of the collation
descriptor user exit parameter is

ADARUN CDXnn=exit-name

—where

nn is the number of the collation descriptor exit, a two-digit decimal integer in
the range 01-08 inclusive.

exit-name isthe name of the user routine that gets control at the collation descriptor
exit; the name can be up to 8 characters long.

Only one program may be specified for each collation descriptor exit. Up to 8 collation

descriptor exits may be specified (in any order). See the DBA Reference Manual for more
information.

213

Adabas Utilities Manual, Volume 1

BS2000

Dataset Link Name Storage More Information

Associator DDASSORN Required for OPERCOM
DDIB or RESETDIB with
inactive nucleus

ADARUN parameters SYSDTA/ DDCARD Operations Manual
ADADBS parameters ~ SYSDTA/ DDKARTE Utilities Manual
ADARUN messages SYSOUT/ DDPRINT Messages and Codes
ADADBS messages SYSLST/ DDDRUCK Messages and Codes

ADADBS JCL Example (BS2000)
In SDF Format:

/ .ADADBS LOGON

/MODIFY-TEST-OPTIONS DUMP=YES

/REMARK *

/REMARK * A D A D B S ALL FUNCTIONS

/REMARK *

/ASS-SYSLST L.DBS.DATA

/ASS-SYSDTA *SYSCMD

/SET-FILE-LINK DDLIB,ADAvrs.MOD
/START-PROGRAM *M (ADA.MOD, ADARUN) , PR-MO=ANY
ADARUN PROG=ADADBS, DB=yyyyy, IDTNAME=ADABASS5B
ADADBS REFRESH FILE=1

/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/ .ADADBS LOGON

/OPTION MSG=FH,DUMP=YES

/REMARK *

/REMARK * A D A D B S ALL FUNCTIONS
/REMARK *

/SYSFILE SYSLST=L.DBS

/FILE ADA.MOD,LINK=DDLIB

/EXEC (ADARUN, ADA.MOD)

ADARUN PROG=ADADBS, DB=yyyyy, IDTNAME=ADABASSB
ADADBS REFRESH FILE=1

/LOGOFF NOSPOOL

214

ADADBS

0S/3900r z/OS

Dataset DD Name Storage More Information

Associator DDASSORn disk Required only for OPERCOM DDIB
or RESETDIB functions with inactive
nucleus

ADADBS messages DDDRUCK printer Messages and Codes
ADARUN messages DDPRINT printer Messages and Codes
ADARUN parameters DDCARD reader Operations Manual
ADADBS parameters DDKARTE reader

ADADBS JCL Example (OS/390 or zZ/OS)

Refer to ADADBS in the MV SJOBS dataset for this example.

/ /ADADBS JOB

//*

//* ADADBS :

//* DATA BASE SERVICES (BATCH)

//*

//DBS EXEC PGM=ADARUN

//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*

//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1l <=== ASSO
//DDDATAR1 DD DISP=SHR, DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR, DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
/ /DDDRUCK DD SYSOUT=X

//DDPRINT DD SYSOUT=X

//SYSUDUMP DD SYSOUT=X

/ /DDCARD DD *

ADARUN PROG=ADADBS, MODE=MULTI, SVC=xxx, DEVICE=dddd, DBID=yyyyy
/*

/ /DDKARTE DD *

ADADBS REFRESH FILE=1

/*

//

215

VM/ESA or zZ/VM

Adabas Utilities Manual, Volume 1

Dataset DD Name Storage More Information

Associator DDASSORN disk/terminal/reader ~ Required only for
OPERCOM DDIB or
RESETDIB functions
with inactive nucleus

ADARUN parameters DDCARD disk/terminal/reader ~ Operations Manual

ADADBS parameters DDKARTE disk/terminal/reader

ADARUN messages DDPRINT disk/terminal/printer ~ Messages and Codes

ADADBS messages DDDRUCK disk/terminal/printer

ADADBS JCL Example (VM/ESA or zZ/VM)

Refer to ADADBS in the MV SJOBS dataset for this example.

216

DATADEF DDPRINT, DSN=ADADBS, DDPRINT, MODE=A

DATADEF DUMP, DUMMY

DATADEF DDDRUCK, DSN=ADADBS .DDDRUCK, MODE=A
DATADEF DDCARD, DSN=RUNDBS.CONTROL, MODE=A
DATADEF DDKARTE, DSN=ADADBS.CONTROL, MODE=A

ADARUN

Contents of RUNDBS CONTROL Al:

ADARUN PROG=ADADBS, DEVICE=dddd, DB=yyyyy

Contents of ADADBS CONTROL Al:

ADADBS REFRESH FILE=1

ADADBS

VSE/ESA
File File Name Storage Logical Unit More Information
Associator ASSORn disk * Required for OPERCOM
DDIB or RESETDIB
functions with inactive
nucleus
ADARUN parameters — reader SYSRDR
CARD tape SY S000
CARD disk *
ADADBS parameters - reader SYSIPT Utilities Manual
ADARUN messages - printer SYSLST Messages and Codes
ADADBS messages - printer SYS009 Messages and Codes

* Any programmer logical unit may be used.

ADADBS JCS Example (VSE/ESA)
See appendix B for a description of the VSE/ESA procedures.
Refer to member ADADBS.X in the MV SJOBS dataset for this example.

* $$ JOB JNM=ADADBS, CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D

* DATABASE SERVICES (BATCH)
// JOB ADADBS

// EXEC PROC=ADAVVLIB

// EXEC PROC=ADAVVFIL

// EXEC ADARUN, SIZE=ADARUN

ADARUN PROG=ADADBS, MODE=MULTI, SVC=xxx, DEVICE=dddd, DBID=yyyyy
/*

ADADBS REFRESH FILE=1

/*

/&

* $$ EOJ

217

218

ADADCK : CHECK DATA STORAGE

Functional Overview

ADADCK checks the Data Storage and the Data Storage space table (DSST) of a specific file
(or files) in the database.

ADADCK reads each used Data Storage block (according to the Data Storage extentsin thefile
control block) and performs the following checks:

e Block length within permitted range? (4 << block length << physical block size)
e Sum of length of all records in the Data Storage block plus 4 = block length?

. Is there any record with a record length greater than the maximum compressed record length
for the file or with alength < 0?

e Arethere any duplicate ISNs within one block?

. Does the associated DSST element contain the correct value? If not, a REPAIR of the DSST is
necessary (see REPAIR parameter on page 221).

Notes:

ADADCK does not require the Adabas nucleus to be active.

If the nucleusis active, ADADCK synchronizes its operation with the active nucleus unless the
NOOPEN parameter is specified.

3. Any pending autorestart condition is ignored.
This utility should be used only for diagnostic purposes.

ADADCK returns a condition code 4 or 8 if an error occurs.

219

Adabas Utilities Manual, Volume 1

DSCHECK : Check Data Storage

ADADCK DSCHECK [FILE= { file [FROMRABN=DS-blknum] [TORABN=DS-blknum] |
file—file }]
[NOOPEN]
[NOUSERABEND)]
[REPAIR]
[USAGE]

Optional Parameter s and Subparameters
FILE : Filesto Be Checked

The file (or asingle range of files) to be checked. If omitted, al filesin the database are checked.

FROMRABN : Data Storage Block Number

The RABN of the Data Storage block where the check is to start. This parameter is applicable
only if asinglefileisto be checked.

If omitted, the check starts at the beginning of the first allocated Data Storage extent for thefile.

NOOPEN : Prevent Open Synchronization

When starting, ADADCK normally performs a utility open call to the nucleus to assure that no
blocks of the affected file or files are still in the nucleus buffer pool. However, this also locks
the file for other users. Specifying NOOPEN prevents ADADCK from issuing the open call and
blocking file usage for other users.

NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” isdisplayed and
the utility terminates with condition code 20.

220

ADADCK

REPAIR : Repair the Data Storage Space Table

If ADADCK finds any invalid Data Storage space table elements, it automatically repairs the
table if this parameter is supplied.

TORABN : Ending Data Storage Block Number

The RABN of the Data Storage block where the check is to end. This parameter is applicable
only if asinglefileisto be checked.

USAGE : Print Data Storage Block Usage

If USAGE is specified, ADADCK printsabar graph that shows the number of bytes used in each
Data Storage block, the block size, and the percentage of blocks used.

Examples

Check Data Storage and its space table for file 20, print a bar graph of the Data Storage block
utilization and repair the space table if required.

ADADCK DSCHECK FILE=20, USAGE, REPAIR

Check Data Storage and its space table for the files 8 through 12.
ADADCK DSCHECK FILE=8-12

Check Data Storage and its space table for file 12 in the RABN range 878 through 912.
ADADCK DSCHECK FILE=12, FROMRABN=878, TORABN=912

221

Adabas Utilities Manual, Volume 1

JCL/JCS Requirements and Examples

This section describes the job control information required to run ADADCK with BS2000,
0S/390 or Z/OS, VM/ESA or zZ/VM, and V SE/ESA systems and shows exampl es of each of the

job streams.

BS2000
Dataset Link Name Storage More Information
Associator DDASSORN disk
Data Storage DDDATARN disk
ADARUN parameters SYSDTA/ DDCARD Operations Manual
ADADCK parameters SYSDTA/ DDKARTE
ADARUN messages SYSOUT DDPRINT Messages and Codes
ADADCK messages SYSLST DDDRUCK Messages and Codes

ADADCK JCL Example (BS2000)
In SDF Format:

/ .ADADCK LOGON

/MODIFY-TEST-OPTIONS DUMP=YES

/REMARK *

/REMARK *A D A D C K DATA STORAGE CHECK

/REMARK *

/REMARK *

/ASS-SYSLST L.DCK.DATA

/ASS-SYSDTA *SYSCMD

/SET-FILE-LINK DDLIB,ADAvrs.MOD

/SET-FILE-LINK DDASSOR1,ADAYyyyy.ASSO, SHARE-UPD=YES
/SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA, SHARE-UPD=YES
/START-PROGRAM *M (ADA.MOD, ADARUN) , PR-MO=ANY

ADARUN PROG=ADADCK, DB=yyyyy, IDTNAME=ADABASS5B
ADADCK DSCHECK FILE=27

/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

222

ADADCK

/ .ADADCK LOGON

/OPTION MSG=FH,DUMP=YES

/REMARK *

/REMARK *A D A D C K DATA STORAGE CHECK
/REMARK *

/REMARK *

/SYSFILE SYSLST=L.DCK.DATA

/FILE ADA.MOD,LINK=DDLIB

/FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
/FILE ADAyyyyy.DATA ,LINK=DDDATARI,SHARUPD=YES
/EXEC (ADARUN, ADA.MOD)

ADARUN PROG=ADADCK, DB=yyyyy, IDTNAME=ADABASS5B
ADADCK DSCHECK FILE=27

/LOGOFF NOSPOOL

0S/3900r z/OS

Dataset DD Name Storage More Information
Associator DDASSORN disk

Data Storage DDDATARN disk

ADARUN parameters DDCARD reader Operations Manual
ADADCK parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes
ADADCK messages DDDRUCK printer Messages and Codes

223

Adabas Utilities Manual, Volume 1

ADADCK JCL Example (OS/390 or zZ/OS)
Refer to ADADCK in the MV SJOBS dataset for this example.

224

DATA STORAGE CHECK

EXEC PGM=ADARUN

DISP=SHR, DSN=ADABAS.Vvrs .LOAD <=== ADABAS LOAD
DISP=SHR, DSN=EXAMPLE .DByyyyy.ASSOR1 <=== ASSO
DISP=SHR, DSN=EXAMPLE .DByyyyy.DATAR1 <=== DATA
SYSOUT=X

SYSOUT=X

SYSOUT=X

*

ADARUN PROG=ADADCK, SVC=xxx,DEVICE=dddd, DBID=yyyyy

*

/ /ADADCK JOB
//*

//* ADADCK :
//*

//*

//DCK

//STEPLIB DD
//*

//DDASSOR1 DD
//DDDATAR1 DD
/ /DDDRUCK DD
//DDPRINT DD
//SYSUDUMP DD
/ /DDCARD DD
/*

/ /DDKARTE DD
ADADCK DSCHECK FILE=27
/*

//

VM/ESA or zZ/VM

ADADCK

Dataset DD Name Storage More Information
Associator DDASSORn disk
Data Storage DDDATARnN disk

ADARUN parameters DDCARD disk/terminal/reader
ADADCK parameters DDKARTE disk/terminal/reader
ADARUN messages DDPRINT disk/terminal/printer
ADADCK messages DDDRUCK disk/terminal/printer

ADADCK JCL Example (VM/ESA or zZ/VM)

DATADEF DDASSOR1,DSN=ADABASVvV.ASSO,VOL=ASSOV1
DATADEF DDDATAR1, DSN=ADABASVv.DATA,VOL=DATAV1
DATADEF DDPRINT, DSN=ADADCK.DDPRINT,6 MODE=A
DATADEF DUMP, DUMMY

DATADEF DDDRUCK, DSN=ADADCK.DDDRUCK, MODE=A
DATADEF DDCARD, DSN=RUNDCK.CONTROL, MODE=A
DATADEF DDKARTE, DSN=ADADCK.CONTROL, MODE=A
ADARUN

Contents of RUNDCK CONTROL A1:

ADARUN PROG=ADADCK, DEVICE=dddd, DB=yyyyy

Contents of ADADCK CONTROL Al:

ADADCK DSCHECK FILE=27

Operations Manual

Messages and Codes
Messages and Codes

225

Adabas Utilities Manual, Volume 1

VSE/ESA

File Symbolic Storage Logical Unit More Information
Name

Associator ASSORnN disk *

Data Storage DATARN disk *

ADARUN parameters — reader SYSRDR
CARD tape SY S000
CARD disk *

ADADCK parameters reader SYSIPT

ADARUN messages printer SYSLST Messages and Codes

ADADCK messages printer SYS009 Messages and Codes

* Any programmer logical unit may be used.

ADADCK JCS Example (VSE/ESA)

226

See appendix B for descriptions of the VSE/ESA procedures (PROCS).
Refer to member ADADCK.X for this example.

* $$ JOB JNM=ADADCK, CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D

// JOB ADADCK

* DATA STORAGE CHECK

// EXEC PROC=ADAVVLIB

// EXEC PROC=ADAVVFIL

// EXEC ADARUN, SIZE=ADARUN

ADARUN PROG=ADADCK, MODE=MULTI, SVC=xxx, DEVICE=dddd, DBID=yyyyy
/*

ADADCK DSCHECK FILE=27

/*

/&

* $$ EOJ

ADADEF : DEFINE A DATABASE

Functional Overview

The ADADEF tility is used to

Function Action Page

DEFINE define a new database and checkpoint system file; set default 228
encodings for the new database

MODIFY change default encodings set using ADADEF DEFINE 237

NEWWORK define a new Work file for an existing database 240

The following database characteristics are defined with ADADEF:
e database name and ID
e database components (Associator, Data Storage, and Work)
— device type
- dize
e checkpoint system file
e database default encodings

Database Components

Each database component (Associator, Data Storage, and Work) must be formatted by the
ADAFRM utility beforeit is defined with ADADEF. The ADADEF utility may also be used to
define a new Work dataset for an existing database.

Systems using the Recovery Aid feature require arecovery log (RLOG) dataset, which must first
be formatted with the ADAFRM utility, and then defined using the ADARALI utility.
Checkpoint File

Adabas uses the checkpoint system file to store checkpoint data and user data provided with the
Adabas CL and ET commands. It is required and must be specified using the ADADEF DEFINE
(database) function.

227

Adabas Utilities Manual, Volume 1

DEFINE : Defining a Database and Checkpoint File

Syntax

228

The database and the checkpoint file must be defined at the same time.

The database parameters include the required ASSOSIZE, DATASIZE, and WORKSIZE
parameters and the optional (non-indented) parameters ASSODEV through WORKDEV shown
in the syntax diagram.

The FILE=...,,CHECKPOINT,... statement is aso required for database definition. The
checkpoint file parameters (indented under the FILE statement in the syntax diagram) should
be specified immediately following the FILE statement. See the examples on page 236.

ADADEF DEFINE = ASSOSIZE=size-list

DATASIZE=size-list

WORKSIZE=size

FILE=file-number,CHECKPOINT
DSSIZE=size
MAXISN=maximum-number-of-records-expected
[ACRABN=starting-rabn]
[ASSOPFAC={ Associator-padding-factor | 10 }]
[ASSOVOLUME-="Associator-extent-volume’]
[DATAPFAC={ Data-Storage-padding-factor | 10 }]
[DATAVOLUME-= 'Data-Storage-extent-volume’]
[DSDEV=device-type]
[DSRABN-=starting-rabn]
[DSREUSE={NO | YES }]
[ISNSIZE={3| 4 }]
[MAXDS=maximum-Data-Storage-secondary-allocation]
[MAXNI=maximum-normal-index-secondary-allocation]
[MAXUI=maximum-upper-index-secondary-allocation]
INAME={ file-name’ | CHECKPOINT }]
[NIRABN=starting-rabn]
[NISIZE=size]

ADADEF

[UIRABN=starting-rabn]

[UISIZE=size]
[ASSODEV={ device-type-list | ADARUN-device }]
[DATADEV={ device-type-list | ADARUN-device }]
[DBIDENT={ database-id | ADARUN-dbid }]
[DBNAME={ database-name | GENERAL-DATABASE }]
[FACODE={alpha-EBCDIC-key |_37}]
[FWCODE={wide-key | 4095}]
[MAXFILES={ maximum-number-of-files | 255 }]
[INOUSERABEND]
[OVERWRITE]
[RABNSIZE={ 3|4 }]
[UACODE={alpha-ASCll-key | 437}]
[UES={YES | NO}]
[UWCODE={wide-key | FWCODE-definition}]
[WORKDEV={ device-type-list | ADARUN -device }]

Essential Parameters
ASSOSIZE /| DATASIZE / WORK SIZE : Database Size

ASSO-/DATA-/WORKSIZE specifies the number of blocks or cylinders to be assigned to the
Associator, Data Storage, or Work. A block value must be followed by “B”; otherwise, the value
is assumed to be cylinders.

If the Associator or Data Storage is to be contained on more than one dataset, the size of each
dataset must be specified. If a companion ASSODEV or DATADEV parameter specifies two
or more extents, the equivalent ASSOSIZE or DATASIZE parameter must specify the extent
sizes as positional operands in the corresponding order (see the examples starting on page 236).

The minimum WORKSIZE alowed is 300 blocks.

Note:

If ASSOSIZE or DATASZE is not specified, the ADADEF DEFINE function will not execute.
If WORKSIZE is not specified, the function will allocate three (3) cylindersto the Work dataset.
Because 3 cylinders are usually not enough to start the database, WORKS ZE is considered to
be a required parameter.

229

Adabas Utilities Manual, Volume 1

DSSIZE : Data Storage Size

FILE ..

DSSIZE specifies the number of blocks or cylinders to be assigned to checkpoint/Data Storage.
For blocks, the value specified must be followed by “B” (for example, DSSIZE=80B).

The size of the checkpoint file specified with the DSSIZE and MAXDS parameters depends on
the amount of ET data to be stored;
the number of utility runs for which checkpoint information is to be retained;

the number of user IDs.

. CHECKPOINT Parameter

FILE= file-number , CHECKPOINT

The FILE...CHECKPOINT parameter indicates the file number to be used for the checkpoint
system file. This parameter is required; the file number must be 255 or lower.

Adabas uses the checkpoint system file to store checkpoint data and user data provided with the
Adabas CL and ET commands.

MAXISN : Highest I SN to be Used

230

The highest ISN that may be assigned to the file. The value specified is used to determine the
space dlocation for the address converter. When determining the MAXISN, consider the
importance of ET data and checkpoint data to your site.

Adabas considers ET data to be more important than checkpoint data. As soon as the ET data
ISN range in the checkpoint system file is exhausted, the first checkpoint ISN is deleted and
given to the ET data. This is an ongoing process. As soon as the MAXISN is reached, a new
address converter extent is allocated and given to the checkpoint data. You can delete
checkpoint data piece by piece using the Adabas Online System function DELCP.

Note:
The way the checkpoint handles data is subject to change in a future release of Adabas.

ADADEF

Optional Parameters
ACRABN / DSRABN / NIRABN / UIRABN : Starting RABN

These parameters may be used to cause allocation for their respective areas to begin with the
specified RABN:

¢ ACRABN for the address converter
e DSRABN for Data Storage

¢ NIRABN for the normal index

e UIRABN for the upper index

ASSODEV / DATADEV / WORKDEV : Device Type

ASSO-/DATA-/WORKDEV specify the device type(s) to be assigned to the Associator, Data
Storage, and Work. These parameters are required only if the device type to be used is different
from that specified with the ADARUN DEVICE parameter.

WORKDEV, if specified, can only be one device type. If the Associator (ASSODEV) or Data
Storage (DATADEV) is to be contained on more than one dataset, the device type for each
dataset must be specified, even if both extents are on the ADARUN DEVICE type.

If multiple extents are used with VSAM datasets, ASSODEV and DATADEV must reflect the
dynamic device type; that is, DD/xxxxR1=9999; DD/xxxxR2=8888; ... DD/xxxxR5=5555. For
example, when defining DDDATARL and DDDATAR2, DATADEV=9999,8888.

Space alocation for specified device types must be given in companion ASSOSIZE,
DATASIZE, and WORKSIZE parameters on this or another ADADEF statement in the same
job. If a ASSODEV or DATADEV parameter specifies more than one extent on the same or
different device types (DATADEV=3380,3350, for example), the companion ASSOSIZE or
DATASIZE parameter must specify the related extent sizes in corresponding order.

ASSOPFAC / DATAPFAC : Padding Factor

ASSOPFA C defines the percentage of space in each Associator RABN block to be reserved for
later entries (padding space). This spaceis used for later descriptor extensions or ISN additions.
The percentage value specified, which can range 1-90, should be large enough to avoid the
overhead caused when block overflow forces splitting of an existing address block into two new
blocks. If ASSOPFAC is not specified, ADADEF assumes a padding factor of 10%.

231

Adabas Utilities Manual, Volume 1

DATAPFAC defines the percentage of space in each Data Storage RABN block to reserve for
later entries (padding space). This space is used when changes to an existing data record cause
it to need more space in the block; an updated record that no longer fits in the existing block
must be moved to another block. The percentage value specified, which can range 1-90, should
be large enough to avoid the overhead caused when block overflow forces splitting of an existing
address block into two new blocks. If DATAPFAC is not specified, ADADEF assumes a padding
factor of 10%.

ASSOVOLUME / DATAVOLUME : Extent Volume

Note:
Values for ASSOVOLUME and DATAVOLUME must be enclosed in apostrophes.

ASSOVOLUME specifies the volume on which the file's Associator space (that is, the AC, NI,
and Ul extents) is to be allocated.

DATAVOLUME specifies the volume on which the file's Data Storage space (DS extents) are
allocated.

If the requested number of blocks cannot be found on the specified volume, ADADEF retries
the allocation while disregarding the ASSOVOLUME or DATAVOLUME parameter value.

If ACRABN, UIRABN, or NIRABN is specified, ADADEF ignores the ASSOVOLUME value
when allocating the corresponding extent type.

If DSRABN is specified, DATAVOLUME isignored for the related file.

If ASSOVOLUME and/or DATAVOLUME are not specified, the file's Associator and/or Data
Storage space, respectively, is alocated according to ADADEF's default allocation rules.

DBIDENT : Database | dentifier

232

DBIDENT specifies the identification number to be assigned to the database. A value in the
range 1-65535 may be specified. If this parameter is omitted, the value specified with the
ADARUN DBID parameter is used.

If multiple databases are to be established, the DBIDENT parameter is required in order to
uniquely identify each database.

ADADEF

DBNAME : Database Name

DBNAME is the name to be assigned to the database. This name appears in the title of the
Database Status Report produced by the ADAREP utility. A maximum of 16 characters may be
specified. Enclose the name in single quotation marks if the name includes any special
characters other than dashes, or if the name contains embedded blanks.

If this parameter is omitted, a default value of “GENERAL-DATABASE” is assigned.

DSDEV : Device Typefor Data Storage

DSDEV specifies the device type to be used for the checkpoint file's Data Storage. Thereisno
default value; if DSDEV is not specified, an arbitrary device type is used.

DSREUSE : Storage Reusage

DSREUSE indicates whether space which becomes available in the checkpoint file is to be
reused. The default is YES.

FACODE : Encoding for Alphanumeric Fields

The FACODE parameter specifies the default encoding for alphanumeric fields for al filesin
the database. The encoding must be derived from EBCDIC encoding; that is, X' 40’ isthe space
character. Modal or “shift” type double-byte character set (DBCS) encodings are supported;
fixed type DBCS (DBCS-only) encodings are not supported. The default encoding key is 37.

The purpose of the database-wide setting isto serve as a default when loading files. Once loaded,
the encoding for afileis stored in its FCB.

You can change the default encoding set in this parameter using the ADADEF MODIFY
function. Changing the database-wide setting does not affect files already |oaded.

FWCODE : Encoding for Wide-Character Fields

The FWCODE parameter specifies the default encoding for wide-character (W) format fields
for all files in the database. The default encoding is 4095; that is, Unicode.

The FWCODE parameter can be used to set awide-character encoding that defines the superset
of code points of al user encodings. For example, Unicode encompasses about 50,000 code
points as opposed to Host-DBCS and Shift-JI'S with about 10,000 code points each.

233

Adabas Utilities Manual, Volume 1

The purpose of the database-wide setting isto serve as a default when loading files. Once loaded,
the encoding for afileis stored in its FCB.

You can change the default encoding set in this parameter using the ADADEF MODIFY
function. Changing the database-wide setting does not affect files already |oaded.

ISNSIZE : 3- or 4-Byte ISN
ISNSIZE indicates whether ISNs in the file are 3 or 4 bytes long. The default is 3 bytes.

MAXDS/MAXNI / MAXUI : Maximum Secondary Allocation

MAXDS/NI/UI specify the maximum number of blocks per secondary extent for Data Storage,
the normal index, and the upper index, respectively. The value specified must be followed by
“B” for blocks (for example, MAXDS=8000B) and cannot be more than 65535B.

MAXFILES: Highest File Number

MAXFILES specifies the maximum number of files that can be loaded into the database. The
minimum value for this parameter is 3. The highest value permitted is 5000 or one |less than the
ASSORL blocksize, whichever islower. For example, 2003 is the highest MAXFILES value for
a database whose ASSORL is stored on a 3380 DASD.

The value specified determines the number of file control blocks and field definition tables to
be alocated when the database is being established. Each file control block requires one
Associator block and each field definition table requires four Associator blocks.

If this parameter is omitted, a value of 255 is assigned.

Once the database has been established, the value for MAXFILES may be changed only by
executing the REORASSO or REORDB functions of the ADAORD Ltility.

NAME : Name of the Checkpoint File

NAME specifies the name for the checkpoint file being defined. This name appears on the
Database Status Report produced by the ADAREP utility. The maximum number of characters
permitted is 16. The default file name is CHECKPOINT.

NISIZE : Normal Index Size

NISIZE specifies the number of blocks or cylinders to be assigned to the normal index. For
blocks, the value specified must be followed by “B” (for example, NISIZE=80B).

234

ADADEF

NOUSERABEND : Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

OVERWRITE : Overwrite Existing Database

Specify OVERWRITE to write over an existing database. OVERWRITE cannot be specified
when creating a database with newly formatted datasets.

RABNSIZE : 3- or 4-Byte RABN

RABNSIZE specifies the length of RABNs in the database. Specify 3 for 24-bit RABNs or 4
for 31-bit RABNs. The default is 3.

UACODE : User Encoding for Alphanumeric Fields

The parameter UACODE specifies the default encoding for aphanumeric fields for ASCII
users. The encoding must be derived from ASCII encoding; that is, X’ 20’ isthe space character.
Encodings for multiple-byte character sets are supported. The default encoding is 437.

The UACODE value is not stored in the file being loaded.

You can override the default encoding set in this parameter for a user session using the OP
command. You can change it generally using the ADADEF MODIFY function.

UES: Universal Encoding Support

Setting the parameter UES activates universal encoding support for the database. Any valid
xXCODE parameter (FACODE, FWCODE, UACODE, UWCODE) implicitly sets UES=YES.

To deactivate UES, you must explicitly set UES=NO.

You can change the default setting of this parameter generally using the ADADEF MODIFY
function.

235

Adabas Utilities Manual, Volume 1

UISIZE : Upper Index Size

UISIZE specifies the number of blocks or cylinders to be assigned to the upper index. For blocks,
the value specified must be followed by “B” (for example, UISIZE=80B).

UWCODE : User Encoding for Wide-Character Fields

The UWCODE parameter specifies the user encoding for wide-character (W) format fields. If
the parameter is not specified, the default value is the current value of FWCODE.

The purpose of the database-wide setting isto serve as a default when loading files. Once loaded,
the encoding for afileis stored in its FCB.

You can override the default encoding set in this parameter for a user session using the OP
command. You can change the default setting generally using the ADADEF MODIFY function.
Changing the database-wide setting does not affect files already loaded.

Examples

236

Example 1:

ADADEF DEFINE

ADADEF ASSOSIZE=200,DATASIZE=600,WORKSIZE=50
ADADEF DBIDENT=1, DBNAME=DATABASE-1

ADADEF MAXFILES=150

ADADEF FILE=1,CHECKPOINT

ADADEF NAME='DB1-CHECKPOINT’ ,6K MAXISN=5000
ADADEF DSSIZE=2,NISIZE=50B,UISIZE=10B

The Associator, Data Storage and Work sizes are equal to 200, 600 and 50 cylinders,
respectively. The numeric identifier for the database is 1 and the database name is
DATABASE-1. The maximum number of files (and the highest file number) that may be loaded
into the database is 150. File 1 isto be reserved for the Adabas checkpoint file. The name of the
first system file is to be DB1-CHECKPOINT. The Data Storage size for this file is to be 2
cylinders; the normal index size 50 blocks; the upper index size 10 blocks; and the MAXISN
is to be 5000.

ADADEF

Example 2:

ADADEF DEFINE

ADADEF ASSODEV=3380,DATADEV=3380,3390,WORKDEV=3380
ADADEF ASSOSIZE=100,DATASIZE=200,300,WORKSIZE=25
ADADEF DBIDENT=2,DBNAME='DATABASE 2’

ADADEF MAXFILES=255

ADADEF FILE=255,CHECKPOINT, MAXISN=5000

ADADEF DSSIZE=3,NISIZE=100B,UISIZE=20B

The Associator is to be contained on a 3380 device type, and occupies 100 cylinders.
Data Storage comprises two datasets. the first dataset is 200 cylinders contained on the first
DATADEYV (3380) devicetype, and the second dataset is 300 cylinders contained on the second
DATADEYV (3390) device type. The Work space is 25 cylinders on the WORKDEV device
(3380).

The numeric identifier for the database is 2, and the database name is DATABASE 2. A
maximum of 255 files may be loaded into the database. An Adabas checkpoint file is loaded
during this step.

MODIFY : Change Encodings

The MODIFY function is used to modify encodings set using ADADEF DEFINE. At least one
of the optional encoding parameters must be specified.

Changing the FACODE, FWCODE, or UWCODE parameters does not affect files already
loaded since the actual encoding of their fields is stored in the FCB. The purpose of the
database-wide setting is to serve as a default when loading files.

ADADEF MODIFY [FACODE={alpha-EBCDIC-key |_current-setting}]
[FWCODE={wide-key | current -setting}]
[NOUSERABEND]
[UACODE={alpha-ASCIll-key | current-setting}]
[UES={YES | NO}]
[UWCODE={wide-key | current-setting}]

237

Adabas Utilities Manual, Volume 1

Optional Parameters
FACODE : Encoding for Alphanumeric Fields

The FACODE parameter specifies the default encoding for alphanumeric fields for al filesin
the database. The encoding must be derived from EBCDIC encoding; that is, X' 40’ isthe space
character. Modal or “shift” type double-byte character set (DBCS) encodings are supported;
fixed type DBCS (DBCS-only) type encodings are not supported. The default encoding key is
the current setting.

The purpose of the database-wide setting isto serve as a default when loading files. Once loaded,
the encoding for afileis stored in its FCB. Changing the database-wide setting does not affect
files aready loaded.

FWCODE : Encoding for Wide-Character Fields

The FWCODE parameter specifies the default encoding for wide-character (W) format fields
for all filesin the database. The default encoding is the current setting.

The FWCODE parameter can be used to set awide-character encoding that defines the superset
of code points of al user encodings. For example, Unicode encompasses about 50,000 code
points as opposed to Host-DBCS and Shift-JI'S with about 10,000 code points each.

The purpose of the database-wide setting isto serve as a default when loading files. Once loaded,
the encoding for afileis stored in its FCB. Changing the database-wide setting does not affect
files aready loaded.

NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

UACODE : User Encoding for Alphanumeric Fields

The parameter UACODE specifies the default encoding for alpha fields for ASCII users. The
encoding must be derived from ASCII encoding; that is, X’ 20" isthe space character. Encodings
for multiple-byte character sets is supported. The default encoding is the current setting.

238

ADADEF

The UACODE setting is not stored in the loaded file. You can override this encoding for a user
session with the OP command.

UES: Universal Encoding Support

The parameter UES can be used to enable or disable universal encoding support for an existing
database. Disabling is only possibleif no files are loaded with wide-character (W) format fields.

Any valid xxCODE parameter (FACODE, FWCODE, UACODE, UWCODE) implicitly sets
UES=YES.

To deactivate UES, you must explicitly set UES=NO.

UWCODE : User Encoding for Wide-Character Fields

The UWCODE parameter specifies the user encoding for wide-character (W) format fields. If
the parameter is not specified, the default value is the current setting.

The purpose of the database-wide setting isto serve as a default when loading files. Once loaded,
the encoding for afileis stored in its FCB. Changing the database-wide setting does not affect
files aready loaded.

You can override the default encoding for a user session with the OP command.

Examples

Example 1:

Disable universal encoding support for an existing database. The database contains no files with
wide (W) format.

ADADEF MODIFY UES=NO

239

Adabas Utilities Manual, Volume 1

Example 2:

Change the default encoding for wide-character (W) format fields for al files in the database
from the current setting to code page 835 (traditional Chinese host double byte including 6204
user-defined characters).

ADADEF MODIFY FWCODE=835

Files already loaded are not affected by this change since the actual encoding of their fieldsis
stored in the FCB. The purpose of the database-wide setting is to serve as a default when loading
files.

NEWWORK : Defining a Work File

The following parameters are used for Work dataset definition:

ADADEF NEWWORK WORKSIZE=size
[INOUSERABEND]
[WORKDEV={ device-type | ADARUN-device }]

Notes:

1. The Adabas nucleus must not be active during this function, and the old Work must be specified
in the JCL/JCS.

2. The ADADEF NEWWORK function cannot be executed if a pending autorestart exists.
Essential Parameter

WORKSIZE : Work Dataset Size

The number of blocks or cylinders to be assigned to the Work dataset.

240

ADADEF

Optional Parameters
NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

WORKDEYV : Device Type

The device type to be assigned to the new Work dataset.

This parameter is required only if the device type to be used is different from that specified by
the ADARUN DEVICE parameter.

Example

A new Work dataset is defined with a size of 50 cylinders. The device type is obtained from the
ADARUN DEVICE parameter.

ADADEF NEWWORK
ADADEF WORKSIZE=50

JCL/JCS Requirements and Examples

This section describes the job control information required to run ADADEF with BS2000,
0S/390 or Z/OS, VM/ESA or zZ/VM, and V SE/ESA systems and shows exampl es of each of the
job streams.

241

Adabas Utilities Manual, Volume 1

BS2000

Dataset Link Name Storage More Information
Associator DDASSORN disk

Data Storage DDDATARN disk

Work DDWORKR1 disk

ADARUN parameters SYSDTA/DDCARD Operations Manual
ADADEF parameters SYSDTA/DDKARTE Utilities Manual
ADARUN messages SYSOUT/DDPRINT Messages and Codes
ADADEF messages SYSLST/DDDRUCK Messages and Codes

ADADEF JCL Examples (BSZOOO)
Define Database

242

In SDF Format:

/ .ADADEF LOGON

/MODIFY-TEST-OPTIONS DUMP=YES

/REMARK *

/REMARK * A D A D E F DEFINE DATABASE
/REMARK *

/ASS-SYSLST L.DEF.DATA

/ASS-SYSDTA *SYSCMD

/SET-FILE-LINK DDLIB,ADAvrs.MOD

/SET-FI
/SET-FI
/SET-FI
/START-
ADARUN
ADADEF
ADADEF
ADADEF
ADADEF
ADADEF
ADADEF
/LOGOFF

LE-LINK DDASSOR1,ADAyyyyy.ASSO
LE-LINK DDDATARI,ADAyyyyy.DATA
LE-LINK DDWORKR1,ADAyyyyy.WORK
PROGRAM *M (ADA.MOD, ADARUN) , PR-MO=ANY
PROG=ADADEF, DB=yyyyy, IDTNAME=ADABAS5B
DEFINE DBNAME=EXAMPLE-DB
ASSOSIZE=100,DATASIZE=200, WORKSIZE=40
MAXFILES=120
FILE=1, CHECKPOINT
NAME= CHECKPOINT ,MAXISN=5000,UISIZE=10B
DSSIZE=500B,NISIZE=100B
SYS-OUTPUT=DEL

ADADEF

In ISP Format:

/ .ADADEF LOGON

/OPTION MSG=FH,DUMP=YES

/REMARK *

/REMARK * A D A D E F DEFINE DATABASE
/REMARK *

/SYSFILE SYSLST=L.DEF.DEFI

/FILE ADA.MOD,LINK=DDLIB

/FILE ADAyyyyy.ASSO , LINK=DDASSOR1

/FILE ADAyyyyy.DATA ,LINK=DDDATAR1

/FILE ADAyyyyy.WORK , LINK=DDWORKR1

/EXEC (ADARUN, ADA.MOD)

ADARUN PROG=ADADEF, DB=yyyyy, IDTNAME=ADABASS5B
ADADEF DEFINE DBNAME=EXAMPLE-DB

ADADEF ASSOSIZE=100,DATASIZE=200,WORKSIZE=40
ADADEF MAXFILES=120

ADADEF FILE=1,CHECKPOINT

ADADEF NAME= CHECKPOINT ,MAXISN=5000,UISIZE=10B
ADADEF DSSIZE=500B,NISIZE=100B

/LOGOFF NOSPOOL

Define New Work
In SDF Format:

/ .ADADEF LOGON

/MODIFY-TEST-OPTIONS DUMP=YES

/REMARK *

/REMARK * A D A D E F DEFINE NEW WORK
/REMARK *

/ASS-SYSLST L.DEF.NEWW

/ASS-SYSDTA *SYSCMD

/SET-FILE-LINK DDLIB,ADAvrs.MOD
/SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO
/SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA
/SET-FILE-LINK DDWORKR1, ADAyyyyy.WORK
/START-PROGRAM *M (ADA.MOD, ADARUN) , PR-MO=ANY
ADARUN PROG=ADADEF, DB=yyyyy, IDTNAME=ADABASS5B
ADADEF NEWWORK WORKSIZE=60,WORKDEV=dddd
/LOGOFF SYS-OUTPUT=DEL

243

Adabas Utilities Manual, Volume 1

In ISP Format:

/ .ADADEF LOGON

/OPTION MSG=FH,DUMP=YES

/REMARK *

/REMARK * A D A D E F DEFINE NEW WORK
/REMARK *

/SYSFILE SYSLST=L.DEF.NEWW

/FILE ADA.MOD,LINK=DDLIB

/FILE ADAyyyyy.ASSO , LINK=DDASSOR1
/FILE ADAyyyyy.DATA ,LINK=DDDATAR1
/FILE ADAyyyyy.WORK , LINK=DDWORKR1
/EXEC (ADARUN, ADA.MOD)

ADARUN PROG=ADADEF, DB=yyyyy, IDTNAME=ADABASS5B
ADADEF NEWWORK WORKSIZE=60,WORKDEV=dddd
/LOGOFF NOSPOOL

244

0S/3900r z/OS

ADADEF

Dataset DD Name Storage More Information
Associator DDASSORn disk
Data Storage DDDATARNn disk

Work (Current)
ADARUN parameters DDCARD reader Operations Manual
ADADEF parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and
ADADEF messages = DDDRUCK printer Messages and

DDWORKR1 disk

ADADEF JCL Examples (OS/390 or z/OS)

Define Database

/ /ADADEF JOB

//*

//* ADADEF :

//* DEFINE THE PHYSICAL LAYOUT OF THE DATABASE

//* DEFINE THE NUCLEUS SYSTEMFILE: CHECKPOINT FILE
//*

//DEF EXEC PGM=ADARUN

//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <===
//*

//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1l <===
//DDDATAR1 DD DISP=SHR, DSN=EXAMPLE.DByyyyy.DATAR]l <===
//DDWORKR1 DD DISP=SHR, DSN=EXAMPLE.DByyyyy.WORKR1 <===
/ /DDDRUCK DD SYSOUT=X

//DDPRINT DD SYSOUT=X

//SYSUDUMP DD SYSOUT=X

/ /DDCARD DD *

ADARUN PROG=ADADEF, SVC=xxx,DEVICE=dddd, DBID=yyyyy

/*

/ /DDKARTE DD *

ADADEF DEFINE DBNAME=EXAMPLE-DB,DBIDENT=YYYYY
ASSOSIZE=100,DATASIZE=200,WORKSIZE=40

ADADEF
ADADEF

*

MAXFILES=120

Codes
Codes

ADABAS LOAD

ASSO
DATA
WORK

245

Adabas Utilities Manual, Volume 1

ADADEF FILE=19,CHECKPOINT

ADADEF NAME='CHECKPOINT’ ,MAXISN=5000
ADADEF DSSIZE=100B,NISIZE=3B,UISIZE=3B
/*

//

Refer to ADADEF in the MV SJOBS dataset for this example.

Define New Work

//ADADEFNW JOB

//*

//* ADADEF: DEFINE NEW WORK

//*

//DEF EXEC PGM=ADARUN

//STEPLIB DD DISP=SHR, DSN=ADABAS.Vvrs .LOAD <=== ADABAS LOAD
//*

//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1l <=== ASSO
//DDDATAR1 DD DISP=SHR, DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR, DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK

/ /DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X

/ /DDCARD DD *
ADARUN PROG=ADADEF, SVC=xxx,DEVICE=dddd, DBID=yyyyy
/*

/ /DDKARTE DD *

ADADEF NEWWORK WORKSIZE=60, WORKDEV=eceee
/*

//

Refer to ADADEFNW in the MV SJOBS dataset for this example.

246

ADADEF

VM/ESA or zZ/VM

Dataset DD Name Storage More Information
Associator DDASSORn disk
Data Storage DDDATARN disk
Work DDWORKR1 disk

ADARUN parameters DDCARD disk/terminal/ reader Operations Manual
ADADEF parameters DDKARTE disk/terminal/ reader

ADARUN messages DDPRINT disk/terminal/ printer Messages and Codes
ADADEF messages = DDDRUCK disk/terminal/ printer

ADADEF JCL Examples (VM/ESA or zZ/VM)
Define Database

DATADEF DDASSOR1,DSN=ADABASVvV.ASSO,VOL=ASSOV1
DATADEF DDDATAR1, DSN=ADABASVv.ASSO,VOL=DATAV1
DATADEF DDWORKR1, DSN=ADABASVvV.WORK, VOL=WORKV1
DATADEF DDPRINT, DSN=ADADEF .DDPRINT, MODE=A
DATADEF DUMP, DUMMY

DATADEF DDDRUCK, DSN=ADADEF .DDDRUCK, MODE=A
DATADEF DDCARD, DSN=RUNDEF .CONTROL, MODE=A
DATADEF DDKARTE, DSN=ADADEF .CONTROL, MODE=A
ADARUN

Contents of RUNDEF CONTROL Al:

ADARUN PROG=ADADEF, DEVICE=dddd, DB=yyyyy

Contents of ADADEF CONTROL Al:

ADADEF DEFINE DBNAME=EXAMPLE-DB
ADADEF ASSOSIZE=100,DATASIZE=200,WORKSIZE=40
ADADEF MAXFILE=120

*
ADADEF FILE=1, CHECKPOINT

ADADEF NAME='CHECKPOINT’ ,6 MAXISN=5000,UISIZE=10B
ADADEF DSSIZE=500B,NISIZE=100B

247

Adabas Utilities Manual, Volume 1

Define New Work

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDDATAR1, DSN=ADABASVv.ASSO,VOL=DATAV1
DATADEF DDWORKR1, DSN=ADABASVvV.WORK, VOL=WORKV1
DATADEF DDPRINT, DSN=ADADEF .DDPRINT, MODE=A
DATADEF DUMP, DUMMY

DATADEF DDDRUCK, DSN=ADADEF .DDDRUCK, MODE=A
DATADEF DDCARD, DSN=RUNDEF .CONTROL, MODE=A

DATADEF DDKARTE, DSN=ADADEF .CONTROL, MODE=A
ADARUN

Contents of RUNDEF CONTROL Al:

ADARUN PROG=ADADEF, DEVICE=dddd, DB=yyyyy

Contents of ADADEF CONTROL Al:

ADADEF NEWWORK WORKSIZE=60,WORKDEV=eceee

248

ADADEF

VSE/ESA

File Symbolic Storage Logical More Information
Name Unit

Associator ASSORn disk *

Data Storage DATARn disk *

Work (Current) WORKR1 disk *

ADARUN parameters — reader SYSRDR
CARD tape SY S000
CARD disk *

ADADEF parameters — reader SYSIPT

ADARUN messages — printer SYSLST

ADADEF messages — printer SY S009 Messages and Codes

* Any programmer logical unit may be used.

ADADEF JCS Examples (VSE/ESA)

See appendix B for descriptions of the VSE procedures.

Define Database
Refer to member ADADEF.X for this example.

* $$ JOB JNM=ADADEF, CLASS=A,DISP=D

* $$ LST CLASS=A,DISP=D

// JOB ADADEF

* DEFINE THE PHYSICAL LAYOUT OF THE DATABASE

* DEFINE THE NUCLEUS SYSTEMFILE: CHECKPOINT FILE

// EXEC PROC=ADAVVLIB

// EXEC PROC=ADAVVFIL

// EXEC ADARUN, SIZE=ADARUN

ADARUN PROG=ADADEF, MODE=SINGLE, SVC=xxx, DEVICE=dddd, DBID=yyyyy

/*

ADADEF DEFINE DBNAME=EXAMPLE-DB,DBIDENT=yyyYyYy
ADADEF ASSOSIZE=100,DATASIZE=200, WORKSIZE=40
ADADEF MAXFILES=120

*

249

Adabas Utilities Manual, Volume 1

ADADEF FILE=19,CHECKPOINT

ADADEF NAME='CHECKPOINT’ ,MAXISN=5000
ADADEF DSSIZE=100B,NISIZE=3B,UISIZE=3B
/*

/&

* $$ EOJ

Define New Work
Refer to member ADADEFNW.X for this example.

* $$ JOB JNM=ADADEFNW, CLASS=A,DISP=D

* $$ LST CLASS=A,DISP=D

// JOB ADADEFNW

* DEFINE NEW WORK

// EXEC PROC=ADAVVLIB

// EXEC PROC=ADAVVFIL

// EXEC ADARUN, SIZE=ADARUN

ADARUN PROG=ADADEF, MODE=SINGLE, SVC=xxx,DEVICE=dddd, DBID=yyyyy
/*

ADADEF NEWWORK WORKSIZE=60, WORKDEV=eceee
/*

/&

* $$ EOJ

250

ADAFRM : FORMAT

Functional Overview

Primary Adabas direct access (DASD) datasets must be formatted using the ADAFRM utility.

These datasets include the Associator, Data Storage, and Work datasets as well as the
intermediate storage (temp, sort, and command/protection/recovery logging) datasets.

Formatting must be performed before any new dataset can be used by the Adabas nucleus or an
Adabas utility. After increasing a dataset with the ADADBS INCREASE or ADD function, new
RABNs must also be formatted.

ADAFRM aso provides functions to reset existing Associator, Data Storage, or Work
blocks/cylinders to binary zeros (nulls). Resetting fills the specified blocks in an existing
Associator, Data Storage, or Work dataset with binary zeros.

Statement Restrictions

More than one ADAFRM function (ASSOFRM, DATAFRM, RLOGFRM, and so on) can be
performed in the same job. However, each function must be specified on separate statements.
See the examples at the end of the chapter for more information.

Formatting Operation

2.

Formatting with ADAFRM comprises two basic operations:
creating blocks (called RABNS) on the specified tracks/cylinders;

filling the created blocks with binary zeros (nulls).

251

Adabas Utilities Manual, Volume 1

Formatting M odes

Syntax

252

There are three ADAFRM formatting modes:

Format anew dataset (...FRM functions). Only the dataset specified by the function name and
the NUMBER parameter is accessed and formatted. The FROMRABN parameter cannot be
specified when formatting a new dataset.

Format part of an existing dataset (ASSOFRM, DATAFRM, WORKFRM, and TEMPFRM
functions). Here, the FROMRABN parameter must be specified, except on OS/390 and
MVS/ESA platforms. When formatting Work and Data Storage (WORKFRM and DATAFRM
functions), the ADAFRM job control must also contain the Associator datasets.

This formatting mode is used in combination with the ADADBS INCREASE function, or to
increase atemp dataset that was too small so that an interrupted ADALOD job can be restarted.
The logical increase using ADADBS INCREASE must precede the physical increase using
ADAFRM. Note that the FROMRABN option is available in this context only under VSE/ESA,
VM/ESA or zZ/VM, and BS2000. See the ADADBS INCREA SE examples starting on page 158.

Reformat blocks of an existing dataset (...RESET functions). This mode opens all Associator,
Data Storage, and Work datasets in the database for access. The FROMRABN parameter is must
be specified for these functions.

Format the Associator (ASSO..) or Data Storage (DATA..) dataset:

ADAFRM { ASSOFRM | DATAFRM } SIZE=size
[DEVICE={device-type| ADARUN-device }]
[{ FROMRABN={start-rabn | NEXT} |
NUMBER={dataset-number | 1} }]
[INOUSERABEND]

ADAFRM

Format the Work (WORK..), command log (CLOG..), protection log (PLOG..), or sort (SORT..)
dataset:

ADAFRM { WORKFRM | CLOGFRM | PLOGFRM | SORTFRM}
SIZE=size
[DEVICE={device-type| ADARUN-device }]
[{ FROMRABN=start-rabn |
NUMBER={dataset-number | 1} }]
[NOUSERABEND]

Format the recovery log (RLOG..) dataset:

ADAFRM RLOGFRM SIZE=size
[DEVICE={device-type| ADARUN-device }]
[NOUSERABEND]

Format atemp (TEMP..) dataset:

ADAFRM TEMPFRM SIZE=size
[DEVICE={device-type| ADARUN-device }]
[FROMRABN-=start-rabn]
[NOUSERABEND]

Reformat blocks of an existing Associator, Data Storage, or Work dataset:

ADAFRM { ASSORESET | DATARESET | WORKRESET }
SIZE=size
FROMRABN-=start-rabn
[NOUSERABEND]

253

Adabas Utilities Manual, Volume 1

Essential Par ameter
SIZE : Size of Areato be Formatted

SIZE specifies the size of the area to be formatted (or reset). Blocks (a decimal value followed
by “B”) or cylinders may be specified. For the RLOGFRM function, the size must be the same
as that specified by the RLOGSIZE parameter on the ADARAI utility’s PREPARE function. See
volume 2 of the Adabas Utilities Manual, page 136.

Optional Parameters
DEVICE : Device Type

DEVICE isthe physica device type on which the areato be formatted is contained. If DEVICE
is not specified, the device type specified by the ADARUN DEVICE parameter is used.

FROMRABN : Starting RABN

254

FROMRABN specifiesthe RABN at which formatting or resetting is to begin. This parameter
may only be used for an existing dataset; NUMBER cannot be specified in the same ADAFRM
job as FROMRABN.

When FROMRABN is specified with a....FRM function, formatting begins at the FROMRABN
point and continues up to the highest complete track before the RABN computed from
FROMRABN + SIZE (assuming a size specified in or converted to blocks). This means that the
last track within the specified range (FROMRABN + SIZE) will be formatted only if all the
track’s RABNSs are within that range.

When increasing the size of an ASSO or DATA dataset, FROMRABN is available as an option
only under VSE/ESA, VM/ESA or zZ/\VM, and BS2000. The specified RABN must be one higher
than the highest allocated RABN before the logical increase using ADADBS (which must
precede the physical increase using ADAFRM). FROMRABN=NEXT instructs ADAFRM to
take the first unformatted RABN as the value for FROMRABN. ADAFRM then verifies that
the range of blocks determined for formatting by the NEXT vaueis contained in the free space
table (FST). If not, ADAFRM terminates with ERROR-126. On 0S/390, FROMRABN should
only be used to reformat existing blocks as the last record pointer in the VTOC cannot be
modified by function FROMRABN. See the examples for ADADBS INCREASE starting on
page 158.

This parameter isrequired for the ASSORESET, DATARESET and WORKRESET functions.
When specified with the function ASSORESET, the FROMRABN value must be greater than
30.

ADAFRM

NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” isdisplayed and
the utility terminates with condition code 20.

NUMBER : Dataset Number

NUMBER selects the nonsequential command log, nonsequential protection log, Associator,
Data Storage and sort dataset to be formatted. The default is 1 (first dataset). Values allowed for

e the Associator (ASSO) or Data Storage (DATA) are 1 through 5;

e protection logs (PLOGs) or command logs (CLOGS) are 2 through 8;
e therecovery log (RLOG) isjust 1;

e SORT iseither 1 or 2 (1 only on VSE systems); and

e WORK or TEMP is either 1 or the default.

ADAFRM ...FRM function statements cannot specify (and will not default to) a NUMBER
value if other ADAFRM statements in the same job specify a FROMRABN value.

NUMBER must match the number suffix of the related data definition (“DD/...") statement. See
the tables of allowed statements and the examples starting on page 257.

Examples

Example 1:

Format 50 cylinders for the Associator, 200 cylinders for Data Storage, 10 cylinders for Work,
and 2 cylinders for the recovery log (RLOG).

ADAFRM ASSOFRM SIZE=50,DEVICE=3380
ADAFRM DATAFRM SIZE=200,DEVICE=3380
ADAFRM WORKFRM SIZE=10,DEVICE=3380
ADAFRM RLOGFRM SIZE=2

255

Adabas Utilities Manual, Volume 1

Example 2:

One cylinder for nonsequential command log dataset 1, and 1 cylinder for nonsequential
command log dataset 2 are to be formatted.

ADAFRM CLOGFRM SIZE=1,DEVICE=3350,NUMBER=1
ADAFRM CLOGFRM SIZE=1,DEVICE=3350,NUMBER=2

Example 3:
The first two blocks of an existing Work dataset are to be reset to binary zeros.
ADAFRM WORKRESET FROMRABN=1,SIZE=2B

Example 4:

Assuming the Data Storage dataset is on a 3380 disk (9 blocks/track, 15 tracks/cylinder), 100
cylinders—starting at cylinder position 201 relative to the beginning of the dataset—will be
formatted.

ADAFRM DATAFRM SIZE=100,FROMRABN=26992

Example 5:

Under VSE/ESA, VM/ESA, z/VM, or BS2000, assuming the Associator of the database has just
been increased by 200 cylinders, this job formats the new space in the database. For more
detailed examples across all supported platforms, see the ADADBS INCREASE examples
starting on page 158.

ADAFRM ASSOFRM SIZE=200,FROMRABN=NEXT

256

ADAFRM

JCL/JCS Requirements and Examples

This section describes the job control information required to run ADAFRM with BS2000,
0S/390 or zZ/OS, VM/ESA or zZ/VM, and V SE/ESA systems and shows exampl es of each of the
job streams.

Note:
When running with the optional Recovery Aid (RLOG), all temporary datasets must also be
cataloged in the job control.

BS2000
Dataset Link Name Storage More Information
Associator DDASSORN disk datasets to be formatted
Data Storage DDDATARN
Work DDWORKR1
Temp DDTEMPR1
Sort DDSORTRnN

Multiple command logs DDCLOGRnN
Multiple protection logs DDPLOGRnN

Recovery log DDRLOGR1

ADARUN parameters SYSDTA/DDCARD Operations Manual
ADAFRM parameters SYSDTA/DDKARTE

ADARUN messages SYSOUT/DDPRINT Messages and Codes
ADAFRM messages SYSLST/DDDRUCK Messages and Codes

ADAFRM JCL Example (BS2000)
In SDF Format:

/ .ADAFRM LOGON

/MODIFY-TEST-OPTIONS DUMP=YES
/REMARK *

/REMARK * A D A F R M ALL FUNCTIONS
/REMARK *

257

258

Adabas Utilities Manual, Volume 1

/ASS-SYSLST L.FRM
/ASS-SYSDTA *SYSCMD

/SET-FILE-LINK
/SET-FILE-LINK
/SET-FILE-LINK
/SET-FILE-LINK
/SET-FILE-LINK
/SET-FILE-LINK
/SET-FILE-LINK
/SET-FILE-LINK
/SET-FILE-LINK
/START-PROGRAM

ADAFRM ASSOFRM
ADAFRM DATAFRM
ADAFRM WORKFRM
ADAFRM SORTFRM
ADAFRM TEMPFRM
ADAFRM PLOGFRM
ADAFRM PLOGFRM
ADAFRM RLOGFRM

DDLIB, ADAvrs.MOD

DDASSOR1, ADAYYYYY -
DDDATAR1, ADAYYYYY -
DDWORKR1 , ADAYYYYY -
DDTEMPR1, ADAYYYYY -
DDSORTR1, ADAYYYYY -
DDPLOGR1, ADAYYYYY - (2

.PLOGR2, OPEN-MODE=0OUTIN, BUFF-LEN=STD (2)
DDRLOGR1, ADAYYYYY - (2

DDPLOGR2, ADAYYYYY

ASSO, OPEN-MODE=0OUTIN, BUFF-LEN=STD (
DATA, OPEN-MODE=OUTIN, BUFF-LEN=STD (
WORK, OPEN-MODE=OUTIN, BUFF-LEN=STD (
TEMP, OPEN-MODE=OUTIN, BUFF-LEN=STD (

(

)
)
)
)
SORT, OPEN-MODE=0OUTIN, BUFF-LEN=STD (2)

1
2
2
2
2
D

PLOGR1, OPEN-MODE=0OUTIN, BUFF-LEN=ST)

RLOGR1, OPEN-MODE=OUTIN, BUFF-LEN=STD (2)

*M (ADA . MOD, ADARUN) , PR-MO=ANY
ADARUN PROG=ADAFRM, DB=yyyyy, IDTNAME=ADABAS5E

SIZE=100
SIZE=200

SIZE=40

SIZE=25

SIZE=10
SIZE=40,NUMBER=1
SIZE=40,NUMBER=2
SIZE=10

/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/ .ADAFRM LOGON
/OPTION MSG=FH,
/REMARK *

DUMP=YES

/REMARK * A D A F R M ALL FUNCTIONS

/REMARK *

/SYSFILE SYSLST=L.FRM
/FILE ADA.MOD,LINK=DDLIB

/FILE ADAYYYYY .
/FILE ADAYYYYY .
/FILE ADAYYYYY .
/FILE ADAYYYYY .
/FILE ADAYYYYY .
/FILE ADAYYYYY .
/FILE ADAYYYYY .
/FILE ADAYYYYY .

ADAFRM ASSOFRM
ADAFRM DATAFRM
ADAFRM WORKFRM

ASSO ,LINK=DDASSOR1,OPEN=OUTIN, BLKSIZE= ()
DATA ,LINK=DDDATAR1, OPEN=OUTIN, BLKSIZE= ()
WORK , LINK=DDWORKR1, OPEN=OUTIN, BLKSIZE= (STD, 2)
TEMP , LINK=DDTEMPR1, OPEN=OUTIN, BLKSIZE= ()
SORT , LINK=DDSORTR1, OPEN=OUTIN, BLKSIZE= ()

STD, 1
STD, 2

STD, 2
STD, 2

PLOGR1, LINK=DDPLOGR1, OPEN=OUTIN, BLKSIZE= (STD, 2)
PLOGR2, LINK=DDPLOGR2 , OPEN=OUTIN, BLKSIZE= (STD, 2)
RLOGR1, LINK=DDRLOGR1 , OPEN=OUTIN, BLKSIZE= (STD, 2)
/EXEC (ADARUN,ADA.MOD)
ADARUN PROG=ADAFRM, DB=yyyyy, IDTNAME=ADABAS5E

SIZE=100
SIZE=200
SIZE=40

ADAFRM

ADAFRM SORTFRM SIZE=25

ADAFRM TEMPFRM SIZE=10

ADAFRM PLOGFRM SIZE=40,NUMBER=1
ADAFRM PLOGFRM SIZE=40,NUMBER=2
ADAFRM RLOGFRM SIZE=10

/LOGOFF NOSPOOL

0S/3900r z/OS

Dataset DD Name Storage More Information
Associator DDASSORN disk datasets to be formatted
Data Storage DDDATARN

Work DDWORKR1

Temp DDTEMPR1

Sort DDSORTRnN

Multiple command logs DDCLOGRnN
Multiple protection logs DDPLOGRnN

Recovery log DDRLOGR1

ADARUN parameters DDCARD reader Operations Manual
ADAFRM parameters DDKARTE disk

ADARUN messages DDPRINT printer Messages and Codes
ADAFRM messages DDDRUCK printer Messages and Codes

ADAFRM JCL Example (OS/390 or z/OYS)

Refer to ADAFRM in the MV SJOBS dataset for this example.

/ /ADAFRM JOB

//*

//* ALLOCATE AND FORMAT THE DATABASE COMPONENTS

//*

//* MORE THAN ONE DATASET CAN BE FORMATTED IN A SINGLE RUN
//*

//*

259

260

Adabas Utilities Manual, Volume 1

//FRM
//STEPLIB
//*
//DDASSOR1
//

/ /DDDATAR1
//

/ /DDWORKR1
//
//DDSORTR1
//
//DDTEMPR1
//
//DDPLOGR1
//

/ /DDPLOGR2
//
//DDCLOGR1
//

/ /DDCLOGR2
//

/ /DDDRUCK
//DDPRINT
//SYSUDUMP
/ /DDCARD

EXEC PGM=ADARUN

DD DISP=SHR, DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD

DD DISP=(NEW, CATL
SPACE= (CYL, (0,100
DD DISP=(NEW, CATL
SPACE= (CYL, (0,200

G) , DSN=EXAMPLE . DByyyyy .ASSOR1,
)
G
)

DD DISP=(NEW, CATLG
)
G
)
G
)

)
) ,UNIT=DISK, VOL=SER=VOLO001
) , DSN=EXAMPLE . DByyyyy . DATAR1,
) ,UNIT=DISK, VOL=SER=VOL002
) , DSN=EXAMPLE . DByyyyy . WORKR1,
UNIT=DISK, VOL=SER=VOL003
, DSN=EXAMPLE . DByyyyy . SORTR1,

SPACE= (CYL, (0,40)),
)
) , UNIT=DISK, VOL=SER=VOL003
)
)

DD DISP=(NEW, CATL
SPACE= (CYL, (0,100

DD DISP=(NEW,CATLG) , DSN=EXAMPLE.DByyyyy.TEMPR1,
SPACE= (CYL, (0,100)) ,UNIT=DISK, VOL=SER=VOL003

DD DISP=(NEW,CATLG) , DSN=EXAMPLE.DByyyyy.PLOGR1,
SPACE= (CYL, (50)) ,UNIT=DISK, VOL=SER=VOL003

DD DISP=(NEW,CATLG) , DSN=EXAMPLE.DByyyyy.PLOGR2,
SPACE= (CYL, (50)) ,UNIT=DISK, VOL=SER=VOLO003

DD DISP=(NEW,CATLG) , DSN=EXAMPLE.DByyyyy.CLOGR1,
SPACE= (CYL, (50)) ,UNIT=DISK, VOL=SER=VOL003

DD DISP=(NEW,CATLG) , DSN=EXAMPLE.DByyyyy.CLOGR2,
SPACE= (CYL, (50)) ,UNIT=DISK, VOL=SER=VOL003

DD SYSOUT=X

DD SYSOUT=X

DD SYSOUT=X

DD *

ADARUN PROG=ADAFRM, SVC=xxx,DEVICE=dddd, DBID=yyyyy

/*
/ /DDKARTE

DD *

ADAFRM ASSOFRM SIZE=100,DEVICE=dddd
ADAFRM DATAFRM SIZE=200,DEVICE=dddd
ADAFRM WORKFRM SIZE=40,DEVICE=dddd
ADAFRM SORTFRM SIZE=100,DEVICE=dddd
ADAFRM TEMPFRM SIZE=100,DEVICE=dddd
ADAFRM PLOGFRM SIZE=50,NUMBER=1,DEVICE=dddd
ADAFRM PLOGFRM SIZE=50,NUMBER=2,DEVICE=dddd
ADAFRM CLOGFRM SIZE=50,NUMBER=1,DEVICE=dddd
ADAFRM CLOGFRM SIZE=50,NUMBER=2,DEVICE=dddd

/*
//

ASSO

DATA

WORK

SORT

TEMP

PLOG1

PLOG2

CLOG1

CLOG2

VM/ESA or zZ/VM

ADAFRM

Dataset DD Name Storage More Information
Associator DDASSORn disk datasets to be formatted
Data Storage DDDATARN

Work DDWORKR1

Temp DDTEMPR1

Sort DDSORTRnN

Multiple command logs DDCLOGRnN

Multiple protection logs DDPLOGRnN

Recovery log DDRLOGR1

ADARUN parameters DDCARD disk/terminal/reader Operations Manual
ADAFRM parameters DDKARTE disk/terminal/reader

ADARUN messages DDPRINT disk/terminal/printer Messages and Codes
ADAFRM messages DDDRUCK disk/terminal/printer Messages and Codes

ADAFRM JCL Example (VM/ESA or zZ/VM)

DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
ADARUN

DDASSOR1
DDDATAR1

DDRLOGR1

DDWORKR1,
DDSORTR1,
DDTEMPR1,
DDPLOGR1,
DDPLOGR2,

, DSN=ADABASVV .
, DSN=ADABASVV .
DSN=ADABASVvV .
DSN=ADABASVvV .
DSN=ADABASVvV .
DSN=ADABASVvV .
DSN=ADABASVvV .
, DSN=ADABASVV .
DDPRINT, DSN=ADAFRM.DDPRINT,6 MODE=A
DUMP, DUMMY
DDDRUCK, DSN=ADAFRM . DDDRUCK, MODE=A
DDCARD, DSN=RUNFRM.CONTROL, MODE=A
DDKARTE, DSN=ADAFRM.CONTROL, MODE=A

ASSO,
DATA,
WORK,
SORT,
TEMP,

VOL=ASSOV1
VOL=DATAV1
VOL=WORKV1
VOL=SORTV1
VOL=TEMPV1

PLOG1, VOL=PLOGV1
PLOG2, VOL=PLOGV2
RLOG1, VOL=RLOGV1

Contents of RUNFRM CONTROL A1:

ADARUN PROG=ADAFRM, DEVICE=dddd, DB=yyyyy

261

Adabas Utilities Manual, Volume 1

Contents of ADAFRM CONTROL Al:

ADAFRM ASSOFRM

SIZE=100

ADAFRM DATAFRM SIZE=200
ADAFRM WORKFRM SIZE=40
ADAFRM SORTFRM SIZE=25
ADAFRM TEMPFRM SIZE=10
ADAFRM PLOGFRM SIZE=40
ADAFRM PLOGFRM SIZE=40,NUMBER=2
ADAFRM RLOGFRM SIZE=10
VSE/ESA
File Symbolic Storage Logical Unit More Information
Name
Associator ASSORnN disk * files to be formatted
Data Storage DATARnN
Work WORKR1
Temp TEMPR1
Sort SORTR1
Multiple command log CLOGRnN
Multiple protection log PLOGRnN
Recovery log RLOGR1
ADARUN parameters — reader SYSRDR
CARD tape SY S000
CARD disk *
ADAFRM parameters — reader SYSIPT
ADARUN messages - printer SYSLST Messages and Codes
ADAFRM messages - printer SY S009 Messages and Codes

* Any programmer logical unit may be used.

262

ADAFRM JCS Example (VSE/ESA)

See appendix B for descriptions of the VSE/ESA procedures (PROCS).
Refer to member ADAFRM.X for this example.

* $$ JOB JNM=ADAFRM, CLASS=A,DISP=D

* $$ LST CLASS=A,DISP=D

// JOB ADAFRM

* FORMAT THE DATABASE COMPONENTS

?/ EXEC PROC=ADAVVLIB

// EXEC PROC=ADAVVFIL

// EXEC ADARUN, SIZE=ADARUN

ADARUN PROG=ADAFRM, MODE=SINGLE, SVC=xxx,DEVICE=dddd, DBID=yyyyy
/*

ADAFRM ASSOFRM SIZE=100,DEVICE=dddd

ADAFRM DATAFRM SIZE=200,DEVICE=dddd

ADAFRM WORKFRM SIZE=40,DEVICE=dddd

ADAFRM SORTFRM SIZE=100,DEVICE=dddd

ADAFRM TEMPFRM SIZE=100,DEVICE=dddd

ADAFRM PLOGFRM SIZE=50,NUMBER=1,DEVICE=dddd
ADAFRM PLOGFRM SIZE=50,NUMBER=2,DEVICE=dddd
ADAFRM CLOGFRM SIZE=50,NUMBER=1,DEVICE=dddd
ADAFRM CLOGFRM SIZE=50,NUMBER=2,DEVICE=dddd
/*

/&

* $$ EOJ

ADAFRM

263

264

ADAICK :
CHECK INDEX AND ADDRESS CONVERTER

Functional Overview

ADAICK checks the physical structure of the Associator. This includes validating the index
based upon the descriptor value structures and the Associator extents defined by the general
control block (GCB) and file control block (FCB).

The ADAICK utility should be used only for diagnostic purposes.
ADAICK can perform the following functions:
e Check index and address converter for specific files;
e Print/dump the contents of any ASSO or DATA block in the database;
e Print/dump the contents of normal (NI) and upper (Ul) indexes.
e Print/dump formatted the contents of GCBs, FCBs, FDTs, and PPTss.
Notes:
ADAICK can run with or without an active Adabas nucleus.

A pending autorestart condition is ignored.

If the nucleus is active, ADAICK synchronizes its operation with the active nucleus unless the
NOOPEN parameter is specified.

265

Adabas Utilities Manual, Volume 1

Summary of Functions

Function Description Page
ACCHECK check the address converter 267
ASSOPRINT print/dump Associator blocks 268
BATCH set printout width to 132 characters per line 269
DATAPRINT print/dump Data Storage blocks 270
DSCHECK print/dump Data Storage record 271
DUMP suspend dump suppression set using NODUMP function 272
FCBPRINT print/dump file control block 273
FDTPRINT print/dump file definition table 274
GCBPRINT print/dump general control block 275
ICHECK check index and address converter 276
INT cancel formatted printout suppression set using NOINT function 277
NIPRINT print/dump normal index 278
NOBATCH set printout width to 80 characters per line 279
NODUMP suppress dumps 280
NOINT suppress formatted printout 281
PPTPRINT print/dump the parallel participant table (PPT) 282
UIPRINT print/dump upper index 284

ADAICK

ACCHECK : Check Address Converter

ADAICK ACCHECK FILE=file-number
[NOOPEN]
[NOUSERABEND)]

Essential Parameter
FILE : Fileto be Checked

The file to be checked. A file number is required the first time you execute ADAICK.
If FILE is omitted on subsequent executions, the last file used by ADAICK is checked.

Optional Parameters
NOOPEN : Prevent Open Synchronization

When starting, ADAICK normally performs a utility open call to the nucleus to assure that no
blocks of the affected file or files are till in the nucleus buffer pool. However, this also locks
the file for other users. Specifying NOOPEN prevents ADAICK from issuing the open call.

NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

267

Adabas Utilities Manual, Volume 1

ASSOPRINT : Print/Dump Associator Blocks

ADAICK ASSOPRINT RABN={rabn | rabn — rabn}
[INOUSERABEND]

Essential Parameter
RABN : RABNsto be Processed

The RABN (or asingle range of RABNS) to be printed/dumped. If ADAICK can determine the
type of information stored in the block (for example. Ul, Nl,...), it produces aformatted printout.

Optional Parameter
NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” isdisplayed and
the utility terminates with condition code 20.

268

ADAICK

BATCH : Set Printout Width to 132 Characters Per Line

ADAICK BATCH [NOUSERABEND]

If ADAICK isto be used in batch mode, this function may be used to set the printout width to

132 characters per line. See the NOBATCH function on page 279 for information about resetting
the printout width.

Optional Parameter
NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.

Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

269

Adabas Utilities Manual, Volume 1

DATAPRINT : Print/Dump Data Storage Blocks

ADAICK DATAPRINT RABN={rabn | rabn — rabn}
[INOUSERABEND]

Essential Parameter
RABN : RABNsto be Processed

The RABN (or asingle range of RABNS) to be printed/dumped.

Optional Parameter
NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

270

ADAICK

DSCHECK : Print/Dump Content of Data Storage Record

ADAICK DSCHECK FILE=file-number
[ISN=isn-of-record]
[INOOPEN]
[INOUSERABEND]

Essential Parameter
FILE : File Number

The number of the file for which the record is to be printed/dumped. A file number is required
the first time you execute ADAICK.

If FILE is omitted on subsequent executions, the last file accessed by ADAICK is used.

Optional Parameters
ISN : 1SN of Data Storage Record

The ISN of the Data Storage record to be printed. If ISN is omitted, the DSCHECK function
prints the last ISN plus 1.

NOOPEN : Prevent Open Resynchronization

When starting, ADAICK normally performs a utility open call to the nucleus to assure that no
blocks of the affected file or files are till in the nucleus buffer pool. However, this also locks
the file for other users. Specifying NOOPEN prevents ADAICK from issuing the open call.

NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

271

Adabas Utilities Manual, Volume 1

DUMP : Suspend Dump Suppression

ADAICK DUMP [NOUSERABEND]

This function suspends suppression of ADAICK dumps. See the NODUMP function on page
280 for information about suppressing dumps.

Optional Parameter
NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.

Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

272

ADAICK

FCBPRINT : Print/Dump File Control Block

ADAICK FCBPRINT FILE=file-number
[NOOPEN]
[NOUSERABEND)]

The file control block (FCB) is to be dumped/printed.

Essential Parameter
FILE : File Number

The number of the file for which the FCB is to be printed/dumped. A file number is required
the first time you execute ADAICK.

If FILE is omitted on subsequent executions, the last file accessed by ADAICK is used.

Optional Parameters
NOOPEN : Prevent Open Resynchronization

When starting, ADAICK normally performs a utility open call to the nucleus to assure that no
blocks of the affected file or files are till in the nucleus buffer pool. However, this also locks
the file for other users. Specifying NOOPEN prevents ADAICK from issuing the open call.

NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

273

Adabas Utilities Manual, Volume 1

FDTPRINT : Print/Dump Field Definition Table

ADAICK FDTPRINT FILE=file-number
[NOUSERABEND)]

The field definition table (FDT) isto be dumped/printed.

Essential Parameter
FILE : File Number

The number of the file for which the FDT is to be printed/dumped. A file number is required
the first time you execute ADAICK.

If FILE is omitted on subsequent executions, the last file accessed by ADAICK is used.

Optional Parameters
NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” isdisplayed and
the utility terminates with condition code 20.

274

ADAICK

GCBPRINT : Print/Dump General Control Block

ADAICK GCBPRINT [NOUSERABEND]

The general control block (GCB) is to be dumped/printed.

Optional Parameter
NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.

Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

275

Adabas Utilities Manual, Volume 1

|CHECK : Check Index and Address Converter

ADAICK ICHECK FILE={file-number | file-number — file-number}
[INOOPEN]
[INOUSERABEND]

Essential Parameter
FILE : Filesto be Checked

The specified file (or a single range of files) to be checked. FILE must be specified.

Optional Parameters
NOOPEN : Prevent Open Resynchronization

When starting, ADAICK normally performs a utility open call to the nucleus to assure that no
blocks of the affected file or files are till in the nucleus buffer pool. However, this also locks
the file for other users. Specifying NOOPEN prevents ADAICK from issuing the open call.

NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

276

ADAICK

INT : Cancel Formatted Printout Suppression

ADAICK INT [NOUSERABEND]

This function cancels suppression of the formatted printout produced by ADAICK. See the
NOINT function on page 281 for information about suppressing formatted printouts.

Optional Parameter
NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.

Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

277

Adabas Utilities Manual, Volume 1

NIPRINT : Print/Dump Normal Index

ADAICK NIPRINT FILE=file-number
[NOUSERABEND)]

Essential Parameter
FILE : File Number

The number of the file for which the normal index is to be printed/dumped. A file number is
required the first time you execute ADAICK.

If FILE is omitted on subsequent executions, the last file accessed by ADAICK is used.

Optional Parameter
NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

278

ADAICK

NOBATCH : Set Print Width to 80 Characters Per Line

ADAICK NOBATCH [NOUSERABEND]

The printout width is set to 80 characters per line. See the BATCH function on page 269 for
information about resetting the printout width.

Optional Parameter
NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.

Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

279

Adabas Utilities Manual, Volume 1

NODUMP : Suppress Dumps

ADAICK NODUMP [NOUSERABEND]

This function suppresses ADAICK dumps. See the DUMP function on page 272 for information
about suspending the suppression.

Optional Parameter
NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.

Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

280

ADAICK

NOINT : Suppress Formatted Printout

ADAICK NOINT [NOUSERABEND]

This function suppresses the formatted printout produced by ADAICK. See the INT function
on page 277 for information about suspending the suppression.

Optional Parameter
NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.

Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

281

Adabas Utilities Manual, Volume 1

PPTPRINT : Print/Dump Parallel Participant Table

ADAICK PPTPRINT [NOUSERABEND]

The paralel participant table (PPT) for the Adabas cluster is to be dumped/printed. Note that
in the dump/print, ‘PPH’ is the tag for the PPT header and ‘ PPE’ is the tag for the PPT entries.

Each of the 32 blocks (RABNS) allocated for the PPT represents a single nucleus in the cluster
and comprises

e asingle header of fixed length; and
e multiple entries of variable length.

In the dump/print, ‘ PPH’ isthe tag for aPPT block’s header and ‘' PPE’ isthetag for a PPT block’s
entries.

Optional Parameters
NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.

Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

282

Example Output

ADAICK PPTPRINT

ADAICK

MEANING: DUMP ASSO BLOCK 000000BF THRU 000000DE

DB 00072 PPT AT RABN 000000BF

DB 00072 PPT BLOCK NUMBER 01

DB 00072 PPH+000 NUMBER OF ENTRIES: 03
DB 00072 PPH+001 NUCLEUS INDICATOR: CO
DB 00072 PPH+002 EXTERNAL NUCID: 0000

DB 00072 PPH+004

UNUSED: 00000000

DB 00072 PPE+000 LENGTH OF PPT ENTRY: 0023

DB 00072 PPE+002 HDDATE FROM FIRST PLOG BLK
DB 00072 PPE+006 HDDATE FROM FIRST PLOG BLK

(HIGH) : 00000000
(LOW) : 00000000

DB 00072 PPE+00A PTT STATUS FLAG: 00
DB 00072 PPE+00B ID OF PPT ENTRY: W

DB 00072 DATASET=ADABAS.GB.UTI.72.WORKR1

DB 00072 PPE+000 LENGTH OF PPT ENTRY: 0023

DB 00072 PPE+002 HDDATE FROM FIRST PLOG BLK
DB 00072 PPE+006 HDDATE FROM FIRST PLOG BLK

(HIGH) : 00000000
(LOW) : 00000000

DB 00072 PPE+00A PTT STATUS FLAG: 00
DB 00072 PPE+00B ID OF PPT ENTRY: 1

DB 00072 DATASET=ADABAS.GB.UTI.72.PLOGR1

DB 00072 PPE+000 LENGTH OF PPT ENTRY: 0023

DB 00072 PPE+002 HDDATE FROM FIRST PLOG BLK
DB 00072 PPE+006 HDDATE FROM FIRST PLOG BLK

(HIGH) : 00000000
(LOW) : 00000000

DB 00072 PPE+00A PTT STATUS FLAG: 00
DB 00072 PPE+00B ID OF PPT ENTRY: 2

DB 00072 DATASET=ADABAS.GB.UTI.72.PLOGR2

ASSO BLOCK 000000BF PPT

0000 03C00000 00000000 00230000 0000OCOOO
0010 O00000OE6 7AC1C4Cl 7A5BC7C5 C24BE4E3
0020 C94BF7F2 4BE6D6D9 D2D9F100 23000000
0030 00000000 000O0F17A C1C4C1l7A 5BC7C5C2
0040 4BE4E3C9 4BF7F24B D7D3D6C7 D9F10023
0050 00000000 00000000 OOF27AC1 C4C1l7A5B
0060 C7C5C24B E4E3C94B F7F24BD7 D3D6C7D9
0070 F2000000 00000000 00000000 00000COCOO
0080 00000000 00000000 00000000 0000OCOOO

SAME
OFFO 00000000 00000000 00000000

* .0 . *
* WADABAS .GB.UT*
*I1.74.WORKR1 . *
* 1ADABAS .GB*
.UTI.74.PLOGR1 .
* 2ADABAS*
.GB.UTI.74.PLOGR
*2 *
* *
* *

DB 00072 PPT RABNS 000000CO - 000000DE (02-32) ARE UNUSED

A DA I CK TERMINATED NORMALLY

2000-07-26

09:45:19

283

Adabas Utilities Manual, Volume 1

UIPRINT : Print/Dump Upper Index

ADAICK UIPRINT FILE=file-number
[NOUSERABEND)]

Essential Parameter
FILE : File Number

The number of the file for which the upper index(es) is/are to be printed/dumped. A file number
is required the first time you execute ADAICK.

If FILE is omitted on subsequent executions, the last file accessed by ADAICK is used.

Optional Parameters
NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

284

ADAICK

Examples

Example 1:
Check the index and address converter for file 18 and print/dump the FDT for thisfile.

ADAICK ICHECK FILE=18
ADAICK FDTPRINT

Example 2:

Set printout width to 120 characters per line (printer). Check index and address converter for
file 1 and print/dump Associator RABNs 123 through 135.

ADAICK BATCH
ADAICK ICHECK FILE=1
ADAICK ASSOPRINT RABN=123-135

285

Adabas Utilities Manual, Volume 1

JCL/JCS Requirements and Examples

Collation with User Exit

This section describes the job control information required to run ADAICK with BS2000,
0S/390 or Z/OS, VM/ESA or zZ/VM, and V SE/ESA systems and shows exampl es of each of the

job streams.

If acollation user exit isto be used during ADAICK execution, the ADARUN CDXnn parameter

must be specified for the utility run.

Used in conjunction with the universal encoding subsystem (UES), the format of the collation

descriptor user exit parameter is

ADARUN CDXnn=exit-name

—where

nn is the number of the collation descriptor exit, a two-digit decimal integer in the
range 01-08 inclusive.

exit-name isthe name of the user routine that gets control at the collation descriptor exit;

the name can be up to 8 characters long.

Only one program may be specified for each collation descriptor exit. Up to 8 collation
descriptor exits may be specified (in any order). See the DBA Reference Manual for more

information.
BS2000
Dataset Link Name Storage More Information
Associator DDASSORN disk
Data Storage DDDATARN disk

286

ADARUN parameters
ADAICK parameters
ADARUN messages
ADAICK messages

SYSDTA/ DDCARD
SYSDTA/ DDKARTE
SYSOUT DDPRINT
SYSLST DDDRUCK

Operations Manual

Messages and Codes
Messages and Codes

ADAICK

ADAICK JCL Example (BS2000)
In SDF Format:

/ .ADAICK LOGON

/MODIFY-TEST-OPTIONS DUMP=YES

/REMARK *

/REMARK *A D A I C K INDEX CHECK

/REMARK *

/REMARK *

/ASS-SYSLST L.ICK.DATA

/ASS-SYSDTA *SYSCMD

/SET-FILE-LINK DDLIB,ADAvrs.MOD

/SET-FILE-LINK DDASSOR1,ADAYyyyy.ASSO, SHARE-UPD=YES
/SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA, SHARE-UPD=YES
/START-PROGRAM *M (ADA.MOD, ADARUN) , PR-MO=ANY

ADARUN PROG=ADAICK,DB=yyyyy, IDTNAME=ADABASSB
ADAICK ICHECK FILE=27

/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/ .ADAICK LOGON

/OPTION MSG=FH,DUMP=YES

/REMARK *

/REMARK *A D A I C K INDEX CHECK

/REMARK *

/REMARK *

/SYSFILE SYSLST=L.ICK.DATA

/FILE ADA.MOD,LINK=DDLIB

/FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
/FILE ADAyyyyy.DATA ,LINK=DDDATARI,SHARUPD=YES
/EXEC (ADARUN, ADA.MOD)

ADARUN PROG=ADAICK,DB=yyyyy, IDTNAME=ADABASSB
ADAICK ICHECK FILE=27

/LOGOFF NOSPOOL

287

Adabas Utilities Manual, Volume 1

0S/390o0r zZ/OS

Dataset DD Name Storage More Information
Associator DDASSORN disk

Data Storage DDDATARN disk

ADARUN parameters DDCARD reader Operations Manual
ADAICK parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes
ADAICK messages DDDRUCK printer Messages and Codes

ADAICK JCL Example (OS/390 or z/OS)
Refer to ADAICK in the MV SJOBS dataset for this example.

//ADAICK JOB

//*

//* ADAICK:

//* INDEX AND ADDRESS CONVERTER CHECK

//*

//ICK EXEC PGM=ADARUN

//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs .LOAD <=== ADABAS LOAD
//*

//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1l <=== ASSO
//DDDATAR1 DD DISP=SHR, DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA

/ /DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X

/ /DDCARD DD *
ADARUN PROG=ADAICK, SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*

/ /DDKARTE DD *
ADAICK ICHECK FILE=1-3
/*

//

288

VM/ESA or zZ/VM

ADAICK

Dataset DD Name Storage More Information
Associator DDASSORn disk

Data Storage DDDATARNn disk

ADARUN parameters DDCARD disk/terminal/reader Operations Manual
ADAICK parameters DDKARTE disk/terminal/reader

ADARUN messages DDPRINT
ADAICK messages DDDRUCK

disk/terminal/printer
disk/terminal/printer

ADAICK JCL Example (VM/ESA or zZ/VM)

DATADEF DDASSOR1,DSN=ADABASVvV.ASSO,VOL=ASSOV1
DATADEF DDDATAR1, DSN=ADABASVv.DATA,VOL=DATAV1
DATADEF DDPRINT, DSN=ADAICK.DDPRINT,6 MODE=A

DATADEF DUMP, DUMMY

DATADEF DDDRUCK, DSN=ADAICK.DDDRUCK, MODE=A
DATADEF DDCARD, DSN=RUNICK.CONTROL, MODE=A
DATADEF DDKARTE, DSN=ADAICK.CONTROL, MODE=A

ADARUN

Contents of RUNICK CONTROL A1:

ADARUN PROG=ADAICK,DEVICE=dddd,DB=yyyyy

Contents of ADAICK CONTROL Al:

ADAICK ICHECK FILE=27

Messages and Codes
Messages and Codes

289

Adabas Utilities Manual, Volume 1

VSE/ESA

File Symbolic Storage Logical More Information
Name Unit

Associator ASSORnN disk *

Data Storage DATARN disk *

ADARUN parameters — reader SYSRDR
CARD tape SY S000
CARD disk *

ADAICK parameters reader SYSIPT

ADARUN messages printer SYSLST Messages and Codes

ADAICK messages printer SYS009 Messages and Codes

* Any programmer logical unit may be used.

ADAICK JCS Example (VSE/ESA)
See appendix B for descriptions of the VSE/ESA procedures (PROCS).
Refer to member ADAICK.X for this example.

* $$ JOB JNM=ADAICK,CLASS=A,DISP=D

* $$ LST CLASS=A,DISP=D

// JOB ADAICK

* INDEX AND ADDRESS CONVERTER CHECK
// EXEC PROC=ADAVVLIB

// EXEC PROC=ADAVVFIL

// EXEC ADARUN, SIZE=ADARUN

ADARUN PROG=ADAICK,MODE=SINGLE, SVC=xxx,DEVICE=dddd, DBID=yyyyy
/*

ADAICK ICHECK FILE=1-3

/*

/&

* $$ EOJ

290

ADAINV : INVERT

Functional Overview

The ADAINV utility is used to

Function Action Page
COUPLE couple two files 292
INVERT create a descriptor 298

The INVERT function
¢ modifies the field definition table (FDT) to indicate that the specified field is a descriptor; and
e addsall values and corresponding ISN lists for the field to the inverted list.

The newly defined descriptor may then be used in the same manner as any other descriptor. This
function may also be used to create a subdescriptor, superdescriptor, phonetic descriptor, or
hyperdescriptor.

The COUPLE function adds a common descriptor to two files (updates their inverted lists). Any
two files may be coupled provided that a common descriptor with identical format and length
definitions is present in both files. A single file may be coupled with up to 18 other files, but
only one coupling relationship may exist between any two files at any onetime. A file may not
be coupled to itself.

Note:
Only files with numbers 255 or lower can be coupled.

Changes affecting a coupled file's inverted lists are automatically made to the other file. The
DBA should consider the additional overhead required to update the coupling lists when the
descriptor used asthe basis for coupling is updated, or when records are added to or deleted from
either file. If afield that is not defined with the NU option is used as the basis for coupling and
the field contains alarge number of null values, a considerable amount of additional execution
time and required disk space to store the coupling lists may result.

An interrupted ADAINV operation can be restarted without first having to restore the file.

291

Adabas Utilities Manual, Volume 1

COUPLE : Define a File-Coupling Descriptor

ADAINV COUPLE FILES=file-numberl, file-number2
DESCRIPTOR="fieldname, fieldname’
SORTSIZE=size
TEMPSIZE=size
[LPB={ prefetch-buffer-size | ADARUN-Iu }]

[LWP={ workpool-size | 1048576 }]
[INOUSERABEND]

[PASSWORD="password’]

[SORTDEV={ device-type | ADARUN-device }]
[TEMPDEV={ device-type | ADARUN-device }]
[TEST]

Essential Parameters
DESCRIPTOR : Descriptors Used as Basis for Coupling

FILES:

The DESCRIPTOR parameter defines one descriptor in each file to provide the basis for
coupling the files. Subdescriptors or superdescriptors may also be used, or may be defined as
or derived from a multiple-value field. The descriptors specified may not be contained within
a periodic group, nor be derived from a periodic group. The descriptors can have different
names, but must have the same length and format definitions.

Filesto Be Coupled

FILES specifies the two files to be coupled. The number of each file must be 255 or lower. The
files specified may not be currently coupled to each other.

SORTSIZE : Sort Size

292

SORTSIZE specifies the space available for the sort dataset or datasets R1/2 (SORTR2 is not
supported under VSE). The value can be either cylinders (a numeric value only) or blocks (a
numeric value followed by “B”). If blocks are specified, they should be equivalent to a full
number of cylinders. The SORTSIZE parameter must be specified. Refer to the Adabas DBA
Reference Manual for more information on estimating the sort space.

ADAINV

TEMPSIZE : Temporary Storage Size

TEMPSIZE defines the space available for the temp dataset. The value may be in cylinders (a
numeric value only) or blocks (a numeric value followed by “B”). This parameter must be
specified.

Optional Parameters
LPB : Prefetch Buffer Size

LPB specifies the size, in bytes, of the internal prefetch buffer. The maximum value is 32760
bytes. The default depends on the ADARUN LU parameter; ADAINV may also reduce a
specified LPB vaue if the LU value is too small.

LWP : Work Pool Size

LWP specifies the size of the work pool to be used for descriptor value sorting. The value can
be specified in bytes or kilobytes followed by a “K”. If no value is specified, the default is
1048576 bytes (or 1024K); however, to shorten ADAINV run time for files with very long
descriptors or an unusually large number of descriptors, set LWP to a higher value. To avoid
problems with the sort dataset, a smaller LWP value should be specified when defining
descriptors for relatively small files.

The minimum work pool size depends on the sort dataset’s device type:

Sort Device Minimum LWP Minimum LWP
Bytes Kilobytes

2000 106496 104K

2314 090112 88K

3375 131072 128K

3380 139264 136K

3390 159744 156K

NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

293

Adabas Utilities Manual, Volume 1

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

PASSWORD : File Password

If one or both of the files being coupled is security protected, a valid password for the file (or
files) must be specified with this parameter. If both files are password-protected, both must have
the same password.

SORTDEYV : Sort Device Type

ADAINV uses the sort dataset to sort descriptor vaues. The SORTDEV parameter indicates the
device type to be used for the sort dataset. This parameter is required only if the device type to
be used is different from that specified with the ADARUN DEVICE parameter. See the MVS
job control information on page 307 for specific SORTDEV considerations.

TEMPDEV : Temporary Storage Device Type

ADAINV uses the temp dataset to store intermediate data. The TEMPDEV parameter indicates
the device type to be used for this dataset. This parameter is required only if the device type to
be used is different from that specified with the ADARUN DEVICE parameter.

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

Example

ADAINV COUPLE FILES=3,4,DESCRIPTOR="AA,BB’

Files 3 and 4 are to be coupled. Descriptor AA from file 3 and descriptor BB from file 4 are to
be used as the basis for the coupling.

294

ADAINV

Temporary Space for File Coupling

An intermediate dataset is generated for each of the files being coupled.

An entry is written to the dataset for each record contained in the file. Each entry contains the
ISN of the record (3 or 4 bytes, depending on the ISNSIZE defined for the files) and the value
(in compressed form) of the descriptor being used as the basis for the coupling. If the descriptor
is defined with the NU option, no entries are written for records in which the descriptor contains
anull value. If the descriptor isamultiple-value field, an entry iswritten for each different value.

The space required for each of the intermediate datasets is a function of the number of records
contained in each Adabas file, and the length and the number of the different values present for
the coupling descriptor in each record.

Use the following equation to determine the space needed for an intermediate dataset:

SP =RECS

—where

SP
RECS
uv

ISNSIZE
AVLEN

e UV e« (ISNSIZE + (AVLEN e 4)

intermediate dataset space required (in bytes).
number of records contained in the coupled file.

average number of unique values per record for the descriptor.

If the descriptor is not defined with the NU option, UV is equa to or less than
1

If the descriptor is defined with the NU option, UV is equal to the average
number of values per record minus the percentage of records that contain a null
value. For example, if the average number of values per record is 1 and 20 per-
cent of the values are null, UV isequal to 1 - 0.2 = 0.8.

length of ISNsin the file (3 or 4 bytes).
average length (after compression) of each value for the descriptor.

Example: Calculating I ntermediate Space Requirementsfor File Coupling

The file being coupled has 3-byte ISNs and contains 50,000 records. The descriptor being used
as the basis for coupling contains 1 value per record (with no null values) and has an average
value length of 5 bytes.

SP =50,0001¢ (3 +(5+ 1))

SP =50,000 ¢ 9
SP = 450,000 bytes

295

Adabas Utilities Manual, Volume 1

Associator Coupling Lists

ADAINV matches the two lists, sorts each resulting list, and writes each list to the Associator
coupling lists.

The temp dataset stores the matched (coupled) ISNsfor each file. An entry iswritten to the temp
dataset for each match found. The entry contains the ISN of each record containing a matching
value.

ADAINV sorts the entries stored on the temp dataset using the sort area and writes the sorted
entries to the Associator coupling lists for file A. The same process is then repeated for file B.

The temp area size requirement depends on the number of matching valuesin the two files for
the descriptor used to couple the files. Each match requires 6 or 8 bytes, depending on the
ISNSIZE defined for the files.

The sort area generally requires twice the amount of space as that needed for the temp area.

File coupling is bidirectional rather than hierarchical in that two coupling lists are created with
each list containing the ISNs which are coupled to the other file.

Example: Coupling Lists

296

Assume that 2 files containing the descriptors AA and BB, respectively, are to be coupled. The
values for the first five records of each file are as follows:

File A File B
ISN Field AA value ISN Field BB value
1 20 1 18
2 25 2 40
3 27 3 25
4 30 4 20
5 40 5 20

If the two files were coupled using AA and BB as the basis for the coupling, the resulting
coupling lists would be:

File A File B
ISN in COUPLED ISN in COUPLED
FILE B* COUNT ISNs FILE A* COUNT ISNs
2 1 5 1 2 45
3 1 2 2 1 3
4 1 1 5 1 2
5 1 1

ADAINV

* Internally, Adabas uses thisfield like a descriptor to determine the number and the ISNs of the
coupled records.

Spacefor Coupling Lists

The total space requirement for the coupling lists depends upon the number of common values
that exist between the two descriptors used as the basis for the coupling.

The space requirement for each common value may be estimated as follows:
SP =4a +4b + 6ab
—where

SP space requirement for one common value (in bytes);
a number of recordsin file A containing the common value;
b number of recordsin file B containing the common value.

The total coupling list requirement is the sum of the space requirements of each common value.

Using sample files A and B as previously defined, space requirements per common value are

Common Value Space Requirements

20 SP = 4(1) + 4(2) + 6(1 » 2) = 24 bytes
25 SP =4(1) + 4(1) + 6(1 » 1) = 14 bytes
40 SP=4(1) + 4(1) + 6(1 1) = 14 bytes

Total space required = 24 + 14 + 14 = 52 bytes

Example: Coupling List Space Requirements

Assume that 2 files are being coupled on the field ID. The values for ID are unique within each
file. There are 5,000 common values in the coupled files.
Common Value Space Requirements
n SP=4(1) + 4(1) + 6(1)
SP = 14 bytes for one common value

297

Adabas Utilities Manual, Volume 1

There are 5,000 common values, each of which requires 14 bytes. The total space requirement
for the coupling lists is 70,000 bytes.

Space Allocation

The coupling lists constructed by ADAINV are contained within the normal (NI) and upper (Ul)
index for each file being coupled. If the NI or Ul component’slogical extents currently allocated
to the file are used up during ADAINV execution, ADAINV attempts to allocate an additional
extent to the component. The size of the extent allocated is equal to 25 percent of the current
total size of all logical extents currently assigned to the component. If insufficient space is
available or if the maximum of five extents has already been alocated to the component,
ADAINV terminates with an error message.

INVERT : Create a Descriptor

The INVERT function creates descriptors, subdescriptors, superdescriptors, hyperdescriptors,
phonetic descriptors or collation descriptors for existing fieldsin afile. Several descriptors may
be created in asingle ADAINV INVERT run, but only for asinglefile.

ADAINV INVERT FILE= file-num
SORTSIZE= size
TEMPSIZE= size
[FIELD= field-name [{,option}...]']...
[COLDE="num,name [,UQ [,XI]]= parent-field’]
[HYPDE= "num,name,length,format [{,option}...]= {parent-field},..."]
[PHONDE-= "name (field-name)’]
[SUBDE="name [,UQ [,XI]]= parent-field (begin,end) ']
[SUPDE= "name [,UQ [,XI]]= {parent-field (begin,end) },... ']
[CODE-= cipher-code]
[LPB= {prefetch-buffer-size | ADARUN-Iu }]
[LWP= {work-pool-size | 1048576 }]
[INOUSERABEND]
[PASSWORD= "password’]
[SORTDEV= {device-type | ADARUN-device }]
[TEMPDEV= {device-type | ADARUN-device }]
[TEST]

298

ADAINV

Essential Parameters
FILE : File Number

FILE specifies the file in which the descriptor(s) to be created is contained.

SORTSIZE : Sort Size

SORTSIZE specifies the space available for the sort dataset or datasets R1/2 (SORTR2 is not
supported under VSE). The value can be either cylinders (a numeric value only) or blocks (a
numeric value followed by “B”). If blocks are specified, they should be equivalent to a full
number of cylinders. The SORTSIZE parameter must be specified. Refer to the Adabas DBA
Reference Manual for more information on estimating the sort space.

TEMPSIZE : Temporary Storage Size

TEMPSIZE defines the space available for the temp dataset. The value may be in cylinders (a
numeric value only) or blocks (a numeric value followed by “B”). This parameter must be
specified.

Optional Parametersand Subparameters
CODE : Cipher Code

If the file specified with the FILE parameter is ciphered, an appropriate cipher code must be
supplied using the CODE parameter.

FIELD / COLDE /HYPDE / PHONDE / SUBDE / SUPDE : Define Descriptor (s)

These parameters may be used to define various types of descriptors. You must specify at least
one descriptor definition for the file specified; you may specify more than one descriptor or type
of descriptor.

Use the FIEL D parameter to define one or more fields as descriptors; use the COLDE parameter
for a collation descriptor; HY PDE parameter for a hyperdescriptor; PHONDE for a phonetic
descriptor; SUBDE for a subdescriptor; and SUPDE for a superdescriptor.

If provided, a FIELD specification must come before any collation descriptor, hyper-, super-,
sub-, or phonetic descriptor specification.

299

Adabas Utilities Manual, Volume 1

FIELD specifies an existing field (or fields) to be inverted. The field may be an elementary or
multiple-value field and may be contained within a periodic group (unless the field is defined
with the FI option).

If the descriptor is to be unique, specify “UQ” following the field name. If the uniqueness of
the descriptor is to be determined with the index (occurrence number) excluded, specify “XI”
as well.

Note:

For Adabas expanded files, ADAINV can only detect unique descriptor violations within the
specified component file. If an identical value exists for a unique descriptor in one of the other
component files, ADAINV cannot detect it. You must therefore ensure that unique descriptor
values remain unique throughout an expanded file.

Although multiple fields can be specified for inversion using the FIELD parameter, only one
collation descriptor, hyper-, sub-, super-, or phonetic descriptor is defined per instance of its
parameter. Multiple instances of the parameters are allowed per execution of ADAINV.

When inverting a sub- or superfield, the respective SUBDE or SUPDE parameter must specify
the same parent fields that were specified when the field was created; otherwise, an error occurs.
Begin and end values are taken from the original field definitions.

If aparent field with the NU option is specified, no entries are made in the inverted list for those
records containing a null value for the field. For super- and hyperdescriptors, this is true
regardless of the presence or absence of values for other descriptor elements.

If a parent field is not initialized and logically fals past the end of the physical record, the
inverted list entry for that record is not generated for performance reasons. To generate the
inverted list entry in this case, it is necessary to unload short, decompress, and reload the file;
or use an application program to initialize the field for each record of the file.

See the ADACMP utility description on page 66 for detailed information about the individual
descriptor syntax, subparameter values, and coding.

LPB : Prefetch Buffer Size

LPB specifiesthe size, in bytes, of the internal prefetch buffer. The maximum value is 32,760
bytes. The default depends on the ADARUN LU parameter; ADAINV may also reduce a
specified LPB value if the LU value is too small.

300

ADAINV

LWP : Work Pool Size

LWP specifies the size of the work pool to be used for descriptor value sorting. The value can
be specified in bytes or kilobytes followed by a “K”. If no value is specified, the default is
1048576 bytes (or 1024K); however, to shorten ADAINV run time for files with very long
descriptors or an unusually large number of descriptors, set LWP to a higher value. To avoid
problems with the Sort dataset, a smaler LWP value should be specified when defining
descriptors for relatively small files.

The minimum work pool size depends on the Sort dataset’s device type:

Sort Device Minimum LWP Minimum LWP

Bytes Kilobytes
2000 106496 104K
2314 090112 88K
3375 131072 128K
3380 139264 136K
3390 159744 156K

NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” is displayed and
the utility terminates with condition code 20.

PASSWORD : File Password
If the file specified with the FILE parameter is security protected, the file's password must be
supplied using this parameter.

SORTDEYV : Sort Device Type

ADAINV uses the sort dataset to sort descriptor vaues. The SORTDEV parameter indicates the
device type to be used for the sort dataset. This parameter is required only if the device type to
be used is different from that specified with the ADARUN DEVICE parameter. See the MVS
job control information at the end of this chapter for specific MVS SORTDEV considerations.

301

Adabas Utilities Manual, Volume 1

TEMPDEYV : Temporary Storage Device Type

ADAINV uses the temp dataset to store intermediate data. The TEMPDEV parameter indicates
the device type to be used for this dataset. This parameter is required only if the device type to
be used is different from that specified with the ADARUN DEVICE parameter.

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

Space Allocation for the INVERT Function

The values for the field being inverted and the ISNs of the records containing the values are
written to the inverted list (normal and upper indexes).

If either the normal or upper index logical extent is exhausted during ADAINV execution,
ADAINYV allocates an additional extent. The size of the extent allocated is equal to 25 percent
of the current total size of all the normal index extents currently allocated to the file.

If sufficient space is not available for the new extent or if the maximum of five extents has
already been allocated, ADAINV terminates with an error message.

Examples

Example 1:

ADAINV INVERT FILE=3,FIELD='AR’, TEMPSIZE=10,SORTSIZE=5

Field AR in file 3 isto be made a descriptor.

Example 2:

ADAINV INVERT FILE=5,SUBDE=’SA=AA(1,4)’
ADAINV TEMPSIZE=6, SORTSIZE=3

Subdescriptor SA isto be created using field AA (positions 1-4) in file 5 as the parent field.

302

ADAINV

Example 3:

ADAINV INVERT FILE=6,SUPDE='SB=AA(1,4),AB(1,1)’
ADAINV TEMPSIZE=5, SORTSIZE=3

Superdescriptor SB is to be created using fields AA (positions 1-4) and AB (position 1) in
file 6.

Example 4:

ADAINV INVERT FILE=1, PHONDE='XX (AA) '
ADAINV TEMPSIZE=6, SORTSIZE=3

A phonetic descriptor XX is created using field AA as the source field.

Example 5;

ADAINV INVERT FILE=6,COLDE='1,Y1=AA’
ADAINV TEMPSIZE=5, SORTSIZE=4

Collation descriptor CDX=01 named Y1 is created using AA as the source field.

JCL/JCS Requirements and Examples

This section describes the job control information required to run ADAINV with BS2000,
0S/390 or Z/OS, VM/ESA or zZ/VM, and V SE/ESA systems and shows exampl es of each of the
job streams.

Collation with User Exit

If a collation user exit is to be used during ADAINV execution, the ADARUN CDXnn
parameter must be specified for the utility run.

Used in conjunction with the universal encoding support (UES), the format of the collation
descriptor user exit parameter is

ADARUN CDXnn=exit-name

303

Adabas Utilities Manual, Volume 1

—where

nn is the number of the collation descriptor exit, a two-digit decimal integer in
the range 01-08 inclusive.

exit-name isthe name of the user routine that gets control at the collation descriptor

exit; the name can be up to 8 characters long.

Only one program may be specified for each collation descriptor exit. Up to 8 collation
descriptor exits may be specified (in any order). See the Adabas DBA Reference Manual for

more information.

BS2000

Dataset Link Name Storage More Information

Associator DDASSORN disk

Intermediate storage DDTEMPR1 disk

Sort area DDSORTR1 disk

Sort area DDSORTR2 disk When using large files, the
Sort area should be split
across two volumes.*

Recovery log (RLOG) DDRLOGR1 disk Required when using the
recovery log option

ADARUN parameters SYSDTA/DDCARD Operations Manual

ADAINV parameters SYSDTA/DDKARTE

ADARUN messages SYSOUT/DDPRINT Messages and Codes

ADAINV messages SYSLST/DDDRUCK Messages and Codes

* Performance can be improved when sorting large files if the sort dataset is split across two
volumes (see the BS2000 information inappendix A of the Operations Manual). If two datasets
are specified, they must both be on the same device type (SORTDEV parameter), and each must
be exactly half the size specified with the SORTSIZE parameter.

304

ADAINV

ADAINV JCL Examples (BS2000)
Couple Files

In SDF Format:

/ .ADAINV LOGON

/MODIFY-TEST-OPTIONS DUMP=YES

/REMARK *

/REMARK * A D A I N V COUPLE FIELD (REFLECTIVE)
/REMARK *

/ASS-SYSLST L.INV.COUP

/ASS-SYSDTA *SYSCMD

/SET-FILE-LINK DDLIB,ADAvrs.MOD

/SET-FILE-LINK DDASSOR1,ADAYyyyy.ASSO, SHARE-UPD=YES
/SET-FILE-LINK DDTEMPR1,ADAyyyyy.TEMP
/SET-FILE-LINK DDSORTR1,ADAyyyyy.SORT
/START-PROGRAM *M (ADA.MOD, ADARUN) , PR-MO=ANY
ADARUN PROG=ADAINV,DB=yyyyy, IDTNAME=ADABASSB
ADAINV COUPLE FILE=1,3,DESCRIPTOR= AA,AA
ADAINV TEMPSIZE=100,SORTSIZE=50

/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/ .ADAINV LOGON

/OPTION MSG=FH,DUMP=YES

/REMARK *

/REMARK * A D A I N V COUPLE FIELD (REFLECTIVE)
/REMARK *

/SYSFILE SYSLST=L.INV.COUP

/FILE ADA.MOD,LINK=DDLIB

/FILE ADAyyyyy.ASSOR ,LINK=DDASSOR1, SHARUPD=YES
/FILE ADAyyyyy.TEMP , LINK=DDTEMPR1

/FILE ADAyyyyy.SORT ,LINK=DDSORTR1

/EXEC (ADARUN, ADA.MOD)

ADARUN PROG=ADAINV,DB=yyyyy, IDTNAME=ADABASSB
ADAINV COUPLE FILE=1,3,DESCRIPTOR= AA,AA
ADAINV TEMPSIZE=100,SORTSIZE=50

/LOGOFF NOSPOOL

305

Adabas Utilities Manual, Volume 1

Invert File
In SDF Format:

/ .ADAINV LOGON

/MODIFY-TEST-OPTIONS DUMP=YES

/REMARK *

/REMARK * A D A I N V INVERT FIELD (REFLECTIVE)
/REMARK *

/ASS-SYSLST L.INV.INVE

/ASS-SYSDTA *SYSCMD

/SET-FILE-LINK DDLIB,ADAvrs.MOD

/SET-FILE-LINK DDASSOR1,ADAYyyyy.ASSO, SHARE-UPD=YES
/SET-FILE-LINK DDTEMPR1, ADAyyyyy.TEMP
/SET-FILE-LINK DDSORTR1,ADAYyyyYy.SORT
/START-PROGRAM *M (ADA.MOD, ADARUN) , PR-MO=ANY
ADARUN PROG=ADAINV,DB=yyyyy, IDTNAME=ADABASS5B
ADAINV INVERT FILE=1

ADAINV TEMPSIZE=100,SORTSIZE=50

ADAINV FIELD= AC

ADAINV SUPDE= S1,UQ=AA(1,3),AD(2,4)

/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/ .ADAINV LOGON

/OPTION MSG=FH,DUMP=YES

/REMARK *

/REMARK * A D A I N V INVERT FIELD (REFLECTIVE)
/REMARK *

/SYSFILE SYSLST=L.INV.INVE

/FILE ADA.MOD,LINK=DDLIB

/FILE ADAyyyyy.ASSOR ,LINK=DDASSOR1, SHARUPD=YES
/FILE ADAyyyyy.TEMP , LINK=DDTEMPR1

/FILE ADAyyyyy.SORT ,LINK=DDSORTR1

/EXEC (ADARUN, ADA.MOD)

ADARUN PROG=ADAINV,DB=yyyyy, IDTNAME=ADABASSB
ADAINV INVERT FILE=1

ADAINV TEMPSIZE=100,SORTSIZE=50

ADAINV FIELD= AC

ADAINV SUPDE= S1,UQ=AA(1,3),AD(2,4)

/LOGOFF NOSPOOL

306

ADAINV

0S/3900r z/OS

Dataset DD Name Storage More Information

Associator DDASSORN disk

Intermediate storage DDTEMPR1 disk

Sort area DDSORTR1 disk

Sort area DDSORTR2 disk When using large files, the Sort
area should be split across two
volumes.*

Recovery log (RLOG) DDRLOGR1 disk Required when using the recovery
log option

ADARUN parameters DDCARD reader Operations Manual

ADAINV parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes

ADAINV messages DDDRUCK printer Messages and Codes

* Performance can be improved when sorting large files if the sort dataset is split across two
volumes, but thisis difficult to accomplish under OS. Two sort datasets may be specified instead.
They must both be on the same device type (SORTDEV parameter), and each must be exactly
half the size specified with the SORTSIZE parameter.

ADAINV JCL Example (OS/390 or Z/OYS)

Couple Files
Refer to ADAINVCO in the MV SJOBS dataset for this example.

//ADAINVCO JOB

//*

//* ADAINV : COUPLE FILES

//*

//INV EXEC PGM=ADARUN

//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*

//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1l <===== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <===== DATA

307

Adabas Utilities Manual, Volume 1

/ /DDWORKR1
//DDTEMPR1
//DDSORTR1
/ /DDDRUCK
//DDPRINT
//SYSUDUMP
/ /DDCARD

DD
DD
DD
DD
DD
DD
DD

SYSOUT=X
SYSOUT=X
SYSOUT=X

*

ADARUN PROG=ADAINV,MODE=MULTI, SVC=xxx,DEVICE=dddd, DBID=yyyyy

/*
/ /DDKARTE

DD

*

ADAINV COUPLE FILE=2,3,DESCRIPTOR=’'BB, BB’

ADAINV
/*
//

Invert File

308

TEMPSIZE=100, SORTSIZE=100

Refer to ADAINV in the MV SJOBS dataset for this example.

B

INVERT A FIELD TO A DE

EC PGM=ADARUN
DISP=SHR, DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD

DISP=SHR, DSN=EXAMPLE .DByyyyy.ASSOR1 <=====
DISP=OLD, DSN=EXAMPLE . DByyyyy.TEMPR1 <=

SYSOUT=X
SYSOUT=X
SYSOUT=X

*

ADARUN PROG=ADAINV,MODE=MULTI, SVC=xxx,DEVICE=dddd, DBID=yyyyy

//ADAINVDE JO
//*

//* ADAINV
//*

//INV EX
//STEPLIB DD
//*

//DDASSOR1 DD
//DDTEMPR1 DD
//DDSORTR1 DD
/ /DDDRUCK DD
//DDPRINT DD
//SYSUDUMP DD
/ /DDCARD DD
/*

/ /DDKARTE DD

*

ADAINV INVERT FILE=1

ADAINV FIELD='AC’

ADAINV SUPDE='S1,UQ=AA(1,3),AD(2,4)"
ADAINV TEMPSIZE=100, SORTSIZE=100

/*
//

ADAINV

VM/ESA or zZ/VM

Dataset DD Name Storage More Information
Associator DDASSORn disk

Intermediate storage DDTEMPR1 disk

Sort area DDSORTR1 disk

Sort area DDSORTR2 disk When using large files, the

Sort area should be split across
two volumes.*

Recovery log (RLOG) DDRLOGR1 disk Required when using the
recovery log option
ADARUN parameters DDCARD disk/terminal/ Operations Manual
reader

ADAINV parameters DDKARTE disk/terminal/
reader

ADARUN messages DDPRINT disk/termina/ Messages and Codes
printer

ADAINV messages DDDRUCK disk/termina/ Messages and Codes
printer

* Performance can be improved when sorting large files if the sort dataset is split across two
volumes, but this is difficult to accomplish under CMS. Two sort datasets may be specified
instead. They must both be on the same device type (SORTDEV parameter), and each must be
exactly half the size specified with the SORTSIZE parameter.

ADAINV JCL Examples (VM/ESA or zZ/VM)

Couple Files

DATADEF DDASSOR1,DSN=ADABASVvV.ASSO,VOL=ASSOV1
DATADEF DDTEMPR1, DSN=ADABASVv.TEMP, VOL=TEMPV1
DATADEF DDSORTR1, DSN=ADABASVv.SORT, VOL=SORTV1
DATADEF DDPRINT, DSN=ADAINV.DDPRINT,6 MODE=A
DATADEF DUMP, DUMMY

DATADEF DDDRUCK, DSN=ADAINV.DDDRUCK, MODE=A
DATADEF DDCARD, DSN=RUNINV.CONTROL, MODE=A
DATADEF DDKARTE, DSN=ADAINV.CONTROL, MODE=A
ADARUN

309

Adabas Utilities Manual, Volume 1

Contents of RUNINV CONTROL Al:

ADARUN PROG=ADAINV,DEVICE=dddd,DB=yyyyy

Contents of ADAINV CONTROL A1:

ADAINV COUPLE FILE=1,3,DESCRIPTOR='AA,AA’
ADAINV TEMPSIZE=100,SORTSIZE=50

*

Invert File

DATADEF DDASSOR1,DSN=ADABASVvV.ASSO,VOL=ASSOV1
DATADEF DDTEMPR1, DSN=ADABASVv.TEMP, VOL=TEMPV1
DATADEF DDSORTR1, DSN=ADABASVv.SORT, VOL=SORTV1
DATADEF DDPRINT, DSN=ADAINV.DDPRINT, MODE=A
DATADEF DUMP, DUMMY

DATADEF DDDRUCK, DSN=ADAINV.DDDRUCK, MODE=A
DATADEF DDCARD, DSN=RUNINV.CONTROL, MODE=A

DATADEF DDKARTE, DSN=ADAINV.CONTROL, MODE=A
ADARUN

Contents of RUNINV CONTROL Al:

ADARUN PROG=ADAINV,DEVICE=dddd,DB=yyyyy

Contents of ADAINV CONTROL A1:

ADAINV INVERT FILE=1

ADAINV TEMPSIZE=100, SORTSIZE=50

*

ADAINV FIELD='AC’

ADAINV SUPDE='S1,UQ=AA(1,3) ,AD(2,4)’

310

ADAINV

VSE/ESA
File File Name Storage Logical More Information
Unit
Associator ASSORnN disk *
Intermediate storage TEMPR1 disk *
Sort area SORTR1 disk *
Recovery log (RLOG) RLOGR1 disk * Required with recovery

log (RLOG) option

ADARUN parameters reader SYSRDR

CARD tape SY S000

CARD disk *
ADAINV parameters — reader SYSIPT
ADARUN messages — printer SYSLST Messages and Codes
ADAINV messages - printer SYS009 Messages and Codes

* Any programmer logical unit can be used.

ADAINV JCS Examples (VSE/ESA)
See appendix B for a description of the VSE/ESA procedures (PROCs).

Couple Files
Refer to member ADAINVCO.X for this example.

* $$ JOB JNM=ADAINVCO,CLASS=A,DISP=D

* $$ LST CLASS=A,DISP=D

// JOB ADAINVCO

* COUPLE FILES

// EXEC PROC=ADAVVLIB

// EXEC PROC=ADAVVFIL

// EXEC ADARUN, SIZE=ADARUN

ADARUN PROG=ADAINV,MODE=MULTI, SVC=xxx, DEVICE=dddd, DBID=yyyyy
/*

ADAINV COUPLE FILE=2,3,DESCRIPTOR='BB, BB’
ADAINV TEMPSIZE=100,SORTSIZE=100
/*

/&

* $$ EOJ

311

Adabas Utilities Manual, Volume 1

Invert File

Refer to member ADAINV.X for this example.

* $$ JOB JNM=ADAINV,CLASS=A,DISP=D

* $$ LST CLASS=A,DISP=D

// JOB ADAINV

* INVERT A FIELD TO A DESCRIPTOR
// EXEC PROC=ADAVVLIB

// EXEC PROC=ADAVVFIL

// EXEC ADARUN, SIZE=ADARUN

ADARUN PROG=ADAINV,MODE=MULTI, SVC=xxx, DEVICE=dddd, DBID=yyyyy
/*

ADAINV INVERT FILE=1

ADAINV FIELD='AC’

ADAINV SUPDE='S1,UQ=AA(1,3),AD(2,4)"
ADAINV TEMPSIZE=100,SORTSIZE=100

/*

/&

* $$ EOJ

312

ADALOD : LOADER

Functional Overview

The ADALOD LOAD function (see page 314) loads a file into the database. Compressed
records produced by the ADACMP or ADAULD utility may be used as input.

ADALOD loads each compressed record into Data Storage, builds the address converter for the
file, and enters the field definitions for the file into the field definition table (FDT). ADALOD
also extractsthe valuesfor all descriptorsin the file together with the ISNs of all recordsin which
the value is present, to an intermediate dataset. This dataset is then sorted into value/ISN
sequence and then entered into the Associator inverted lists.

The ADALOD UPDATE function (see page 341) is used to add or delete a large number of
records to/from an Adabas file. The UPDATE function requires considerably less processing
time than the repetitive execution of the Adabas add/delete record commands. Records to be
added may be the compressed records produced by the ADACMP or ADAULD utility. The ISNs
of records to be deleted can be provided either in an input dataset or by using control statements.

Records may be added and other records deleted during a single execution of ADALOD.

313

Adabas Utilities Manual, Volume 1

LOAD : Load aFile

314

ADALOD LOAD

FILE=file-number [file-type]

DSSIZE=size

MAXISN=max-number-of-records

SORTSIZE=size

TEMPSIZE=size

[ACRABN-=starting-rabn]

[ADAMFILE]

ADAMDE={ field|ISN }
[ADAMOFLOW-=size]
[ADAMPARM={ number|0 }]

[ALLOCATION={FORCE | NOFORCE}]

[ANCHOR-=file-number
MINISN=lowest-allocated-isn,
NOACEXTENSION]

[ASSOPFAC={ padding-factor|10 }]

[ASSOVOLUME="Associator-extent-volume’]

[DATAFRM={ YES|NO }]

[DATAPFAC={ padding-factor|10 }]

[DATAVOLUME="Data-Storage-extent-volume’]

[DSDEV=device-type]

[DSRABN=start-rabn]

[DSREUSE={ YES|NO }]

[ETID=owner-id]

[IGNFDT]

[INDEXCOMPRESSION={ YES|NO }]

[ISNREUSE={ YES|NO }]

[ISNSIZE={ 34 }]

[LIP={ isn-pool-size|2000 }]

[LOWNERID={ owner-id-length | 0 }]

[LWP={ work-pool-size|1048576 }]

[MAXDS={ max-DS-secondary-allocation|no-limit }]

[MAXNI={ max-NI-secondary-allocation|no-limit }]

ADALOD

[MAXRECL={ max-compressed-record-length | max-possible }]
[MAXUI={ max-Ul-secondary-allocation|no-limit }]
[MINISN={ lowest-allocated-isn|1 }]

[MIXDSDEV]

[NAME={ name|TESTFILE }]
[NIRABN=start-rabn]

[NISIZE=size]

[NOACEXTENSION]

[NOUSERABEND]

[NUMREC={ max-number-of-records-to-load|all-records }]
[PGMREFRESH={ YES|NO }]

[RESTART]

[SKIPREC={ number|0}]

[SORTDEV={ device-type| ADARUN-device }]
[TEMPDEV={ device-type|] ADARUN-device }]
[TEST]

[UIRABN=start-rabn]

[UISIZE=size]

[UQDE=descriptor-list]

[USERISN={ YES|NO }]

[VERSION={ 4|5 | 6| 7}]

Essential Parameters
DSSIZE : Extent Sizefor Data Storage
DSSIZE is the count of blocks or cylinders to be assigned to the file's Data Storage logical

extent. This value must be specified. Block values must be followed by “B” (for example,
5000B).

The number can be taken directly from the Space Requirements report produced by the
ADACMP utility. If the specified extent size exceeds the largest free size, ADALOD allocates
as many file extents as necessary (up to atotal of 5) to satisfy the request.

315

Adabas Utilities Manual, Volume 1

If asmall number of recordsis being loaded now and alarger number of recordsisto be added
later, the ADACMP report value should be increased in proportion to the total records to be
added; otherwise, the space allocation for Data Storage (the original and four additional extents)
may not be large enough to accommodate the records to be added. The file must then be
unloaded and reloaded (or reordered) to increase the Data Storage space allocation. For more
information, see the section LOAD File Space Allocation on page 334.

FILE : File Number, File Type

316

FILE specifies the Adabas file number and file type to be assigned to the file.

The number specified must not be currently assigned to another filein the database, unless that
file was first deleted using the KEEPFDT parameter (see ADADBS DELETE function). The
number must not be greater than the maximum file number defined for the database; for a
checkpoint, security, or system file, the number must be 255 or lower (atrigger file can have
a two-byte file number). File numbers may be assigned in any sequence.

The file type is used to indicate that the file is an Adabas system file. One of the following
keywords may be specified:

CHECKPOINT Adabas checkpoint file

SECURITY Adabas security file
SYSFILE Adabas system file
TRIGGER Adabas trigger file
Notes:

An existing checkpoint system file created using the ADADEF utility cannot be overwritten.
The security system file is required if Adabas Security is to be used.

In an Adabas Transaction Manager (ATM) database, SYSFILE numbers 5 and 6 are reserved
for the ATM nucleus. For Adabas version 7.1, these file numbers cannot be changed. The file
numbers will become more flexible in subsequent versions of Adabas.

Use the following parameters to load the ATM system files on an ATM database (ADARUN
DTP=TM):

ADALOD LOAD FILE=5,SYSFILE
ADALOD LOAD FILE=6,SYSFILE

ADALOD

4. |If CHECKPOINT, SECURITY, or TRIGGER is specified, the contents of DD/EBAND are
ignored.

5. CHECKPOINT, SECURITY, or SYSFILE files can be deleted only by the ADADBS DELETE
function running as the only Adabas user; deleting a system file terminates Adabas when
deletion is completed.

6. Adabas allows a maximum of eight (8) system files.

MAXISN : Highest I SN to Be Allocated

The MAXISN parameter isrequired. It specifies the highest ISN that may be assigned in thefile.
The highest MAXISN value that Adabas permits is 4,294,967,294. There is no default value.

Note that MAXISN does not specify the maximum number of records that can be loaded into
the file. The maximum number of records that Adabas permitsin afile depends on the ISNSIZE
parameter, which specifies whether ISNs in the file are 3 bytes or 4 byteslong. If ISNSIZE=3,
Adabas permits up to 16,777,215 records. If ISNSIZE=4, Adabas permits up to 4,294,967,294
records.

However, the MAXISN and MINISN parameters together limit the number of recordsin thefile.
The number of possible ISNs is given by

(MAXISN — MINISN) + 1

For example, to limit afile to 10 million records, the user can specify the following values:

MAXISN=10000000 or MAXISN=30000000
MINISN=1 MINISN=20000001

Similarly, the following values would limit a file with 4-byte ISNs to 50 million records:

MAXISN=50000000 or MAXISN=50500000
MINISN=1 MINISN=500001

ADALOD uses the MAXISN and MINISN values when it allocates space for the address
converter. Depending on the size of RABNSs in the database (which is determined by the
ADADEF parameter RABNSIZE), each ISN requires 3 or 4 bytes in the address converter.
ADALOD multiplies the number of possible ISNs by 3 or 4 and then cal culates the number of
blocks that must be alocated.

317

Adabas Utilities Manual, Volume 1

If more than (MAXISN — MINISN) + 1 records are to be loaded, and if NOACEXTENSION is not
specified, ADALOD increasesthe MAXISN value and allocates an additional address converter
extent.

SORTSIZE : Sort Size

SORTSIZE specifies the space available for the sort dataset or datasets R1/2 (SORTR2 is not
supported under VSE). The value can be either cylinders (a numeric value only) or blocks (a
numeric value followed by “B”). If blocks are specified, they should be equivalent to a full
number of cylinders. The SORTSIZE parameter must be specified. Refer to the Adabas DBA
Reference Manual for more information on estimating the sort space.

TEMPSIZE : Temporary Storage Size

TEMPSIZE specifies the size of the temp dataset for the file. The Temp size equals the total of
TEMP space required for each descriptor in the file; see the section LOAD File Space
Allocation on page 334 for more information. The size can be either in cylinders or blocks
(followed by “B”).

Optional Parametersand Subparameters
ACRABN / DSRABN / NIRABN / UIRABN : Starting RABN

Causes space allocation for the address converter (ACRABN), Data Storage (DSRABN), the
normal index (NIRABN), or the upper index (UIRABN) to begin at the specified RABN.

ADAMFILE : Fileto Be Loaded with ADAM Option

318

ADAMFILE specifies the file is to be loaded using the ADAM option.

If this parameter is specified, the Data Storage RABN for each input record is calculated using
arandomizing algorithm, the result of which is based on the value of the ADAM descriptor in
each record. See the ADAMER utility description for additional information about using the
ADAM option. If ADAMFILE is specified, ADAMDE must also be specified.

ADALOD

ADAMDE : ADAM Key
ADAMDE specifies the field to be used as the ADAM key.

The ADAM descriptor must be defined in the field definition table (FDT). The descriptor must
have been defined with the UQ option, and cannot

e beasub-, super-, hyper-, collation, or phonetic descriptor;
e beamultiple-value field;

e beafield within a periodic group;

e bevariable length;

e gpecify the null suppression (NU) option.

If the ISN of the record is to be used as the ADAM key, ADAMDE=ISN must be specified.

This parameter must be specified when the ADAM option has been selected for the file being
loaded with the ADAMFILE parameter.

ADAMOFLOW : Overflow Area Sizefor ADAM File

ADAMOFLOW isthe size of the Data Storage area to be used for ADAM file overflow. The
ADAMOFLOW value applies only if the ADAM option has been selected for the file being
loaded (see ADAMFILE parameter).

ADALOD will choose a prime number which is less than DSSIZE minus ADAMOFLOW (in
blocks). This prime number is used to compute the Data Storage RABN for each record. If a
record does not fit into the block with the computed RABN, it iswritten to the next free RABN
in the overflow area

ADAMPARM : Bit Truncation for ADAM File

ADAMPARM specifies the number of hits to be truncated from the ADAM descriptor value
before it is used as input to the ADAM randomizing algorithm. A value in the range 1-255 may
be specified. If this parameter is omitted, a value of 0 bits (no truncation) will be used.

This parameter achieves a type of record “clustering” with nearly equa ADAM Kkeys.
ADAMPARM can be specified only when the ADAMFILE parameter has also been specified.

319

Adabas Utilities Manual, Volume 1

ALLOCATION : Action to Follow File Extent Allocation Failure

ALLOCATION specifies the action to be taken if file extent allocations cannot be obtained
according to the placement parameters ACRABN, DSRABN, NIRABN, or UIRABN.

By default (that is, ALLOCATION=FORCE), the utility terminates with error if any file extent
allocation cannot be met according to RABN placement parameters.

If ALLOCATION=NOFORCE is specified and any allocation with placement parameters fails,
the utility retries the alocation without the placement parameter.

If insufficient space can be obtained according to the placement parameters DSRABN,
NIRABN, or UIRABN, only thefirst extent will be made there and the rest (until the fifth extent)
will be made elsewhere. But if the placement parameter ACRABN is used with
ALLOCATION=FORCE, the complete space has to be available there; otherwise, the utility
terminates with an error.

ANCHOR : Expanded Component / Anchor File

320

ANCHOR defines the base (anchor) file for either an existing or anew expanded file. If thefile
defined by ANCHOR is the same as that defined by the FILE parameter, the loaded file becomes
the physical base (anchor) file for anew expanded logical file. Otherwise, the FILE file becomes
a new component of the expanded file defined by ANCHOR.

If ANCHOR specifies afile that is not part of an expanded file, the LOAD operation defines
this file and the file specified by the FILE parameter as a new expanded file. It also sets the
NOACEXTENSION indicator for the file specified by ANCHOR.

If ANCHOR specifies the anchor file of an already existing expanded file, the LOAD operation
adds the file specified by FILE to the expanded file.

Note:

When loading a new file to an existing expanded file, you must have exclusive update use of the
anchor file aswell asthe file being added. This can be achieved by locking the anchor file for
utility use.

Both the file specified by ANCHOR and the file specified by FILE must have the same field
definition table (FDT) structure. The maximum record length (MAXRECL parameter) and any
file security definitions must also be the same.

If ANCHOR is specified, the MINISN and NOACEXTENSION parameters must also be
specified. Coupled files or multiclient files cannot be part of expanded files.

ADALOD

ASSOPFAC : Associator Padding Factor

ASSOPFAC defines the padding factor to be used for each Associator block. If not specified,
the default padding factor is 10.

The value specified represents the percentage of each Associator block (padding ared) that is
not to be used during the loading process. The padding areais reserved for use when additional
entries must be added to the block for new descriptor values or new 1SNs for existing values,
thereby avoiding the overhead caused by relocating overflow entries into another block.

A value in the range 1-90 may be specified. The number of bytes contained in an Associator
block, minus the number of bytes reserved for padding, must be larger than the largest descriptor
value contained in the file, plus 10 bytes.

A small padding factor (1-10) should be specified if little or no descriptor updating is planned.
A larger padding factor (10-50) should be specified if a large amount of updating including
addition of new descriptor values (or new ISNs) is planned.

ASSOVOLUME : Associator Extent Volume

Note:
The value for ASSOVOLUME must be enclosed in apostrophes.

ASSOVOLUME specifies the volume on which the file's Associator space (that is, the AC, NI,
and Ul extents) is to be allocated. If the requested number of blocks cannot be found on the
specified volume, ADALOD retries the allocation while disregarding the ASSOVOLUME
parameter.

Note:

If there are five or more blocks of unused ASSO space on the specified volume, ADALOD
allocates these blocks; if thisis not enough space, it ends with ERROR-060. If there are no free
blocks remaining on the specified volume, ADALOD tries to allocate space on another volume.

If ACRABN, UIRABN, or NIRABN is specified, ADALOD ignores the ASSOVOLUME vaue
when alocating the corresponding extent type. If ASSOVOLUME is not specified, the file's
Associator space is allocated according to ADALOD's default allocation rules.

321

Adabas Utilities Manual, Volume 1

DATAFRM : Overwrite ADAM Data Storage

DATAFRM controls overwriting of an ADAM file's Data Storage during loading.
DATAFRM=YES (the default) forces ADALOD to reformat the Data Storage area when thefile
isloaded; DATAFRM=NO prevents reformatting, and is recommended when loading relatively
few records because the load operation may run significantly faster. Specifying NO, however,
assumes that the Data Storage area was previoudy formatted with the ADAFRM utility
specifying FROMRABN.

Caution:
Soecify DATAFRM=NO with care. If the primary Data Sorage area was inxcorrectly formatted,
later file processing could cause errors and unpredictable results.

DATAPFAC : Data Storage Padding Factor

322

DATAPFAC isthe padding factor to be used for each Data Storage physical block. A percentage
value in the range 1-90 may be specified. If not specified here, the default padding factor is 10.

A small padding factor (1-10) should be specified if little or no record expansion is expected.
A larger padding factor (10-50) should be specified if alarge amount of updating is planned that
will expand the logical records.

The percentage val ue specified represents the portion of each Data Storage block (padding area)
to be reserved during the loading process for later record expansion. The padding areais used
when any given logical record within the block requires additional space as the result of record
updating, thereby avoiding the overhead that would be needed to relocate the record to another
block.

Since records loaded into afile can be different lengths, the padding factor cannot be exactly
the percentage specified in each block. Adabas balances the size of the padding area for the
different record lengths to the extent that at least 50 bytes remain in a block.

Example:

A blocksize is 1000 bytes; the padding factor is 10%. The space available for loading records
(blocksize — padding-area) is therefore 900 bytes.

After loading some records, 800 bytes of the block have been used. The next record is 170 bytes
long. Thisrecord cannot be loaded into the current block because less the 50 bytes would remain
in the block after the record was loaded. Therefore, the record is loaded into the next block.

ADALOD

The current block remains filled to 800 bytes. The difference between 800 and 900 bytes (that
is, =100 bytes) is used for balancing.

Suppose the next record had been 150 bytesinstead of 170 bytes, and assume that the cumulative
balancing value at that point in time is a negative number of bytes. The 150-byte record would
be loaded because 50 bytes would remain in the block after the record was loaded (1000 — 950).

However, 50 bytes of the padding area would have been used (900 — 950) leaving +50 bytes for
balancing.

For files loaded with the ADAM option, anew record is loaded into its calculated Data Storage
block if space is available in the block (including the padding ared). Records that cannot be
stored in their calculated block are stored in another block (in this case, the padding areais not
used).

DATAVOLUME : Data Storage Extent Volume

Note:
The value for DATAVOLUME must be enclosed in apostrophes.

DATAVOLUME specifies the volume on which the file's Data Storage space (DS extents) isto
be allocated. If the number of blocks requested with DSSIZE cannot be found on the specified
volume, ADALQOD retries the allocation while disregarding the DATAVOLUME value.

If DSRABN is specified, DATAVOLUME isignored for the related file. If DATAVOLUME is
not specified, the Data Storage space is allocated according to ADALOD’s default allocation
rules.

DSDEV : Data Storage Device Type
DSDEV specifies the device type on which the file's Data Storage is to be loaded. Thereisno
default value; if DSDEV is not specified, an arbitrary device type is used.

DSREUSE : Data Storage Reusage

DSREUSE indicates whether Data Storage space which becomes availableis to be reused. The
default is YES.

323

Adabas Utilities Manual, Volume 1

ETID : Multiclient File Owner 1D

The ETID parameter assigns a new owner |D to all records being loaded into a multiclient file.
It specifiesthe user ID identifying the owner of the records being loaded. The owner ID assigned
to the records is taken from the user profile of the specified user ID.

The ETID parameter must be specified if the file is to be loaded as a multiclient file (see the
LOWNERID parameter discussion on page 325) and the input file contains no owner |Ds; that
is, the input file was not unloaded from a multiclient source file.

ETID is optional if the input file was unloaded from a multiclient source file. In this case, the
loaded records keep their original owner IDs.

The ETID parameter must not be specified when loading a non-multiclient file.

Note:
If the ETID parameter is used, the ADALOD utility requires an active nucleus. The nucleus will
translate the ETID value into the internal owner 1D value.

IGNFDT : Ignore Old FDT

When afile is deleted using the ADADBS DELETE function with the KEEPFDT parameter,
the field definition table (FDT) remains in the Associator. When the file is again reloaded and
IGNFDT is not specified, ADALOD compares the file's old FDT with the new one (security
information is not compared). If both FDTs are identical, ADALOD loads the file and replaces
the old FDT with the new FDT. If the FDTs are not identical, the old FDT is kept and the
ADALOD operation ends with an error message.

Specifying the IGNFDT parameter causes ADALOD to ignore any existing (old) FDT for the
file; no comparison is made. The new FDT replacesthe old FDT, and ADALOD loads the file.

INDEXCOMPRESSION : Compress File Index

324

INDEXCOMPRESSION indicates whether the index of the file is loaded in compressed or
uncompressed form. A compressed index usually requires less index space and improves the
efficiency of index operations in the Adabas nucleus.

If INDEXCOMPRESSION is not specified, ADALOD obtains the default value from the
sequential input file. If the input file was created using

ADACMP, the default value is NO.

ADALOD

. ADAULD, the value of the file at the time of the unload is taken as the default.

ISNREUSE : SN Reusage

ISNREUSE indicates whether or not an 1SN freed as the result of deleting records may be
reassigned to a new record. The default is NO.

ISNSIZE : 3- or 4-Byte ISN
ISNSIZE indicates whether ISNs in the file are 3 or 4 bytes long. The default is 3 bytes.

LIP: SN Buffer Pool Size

LIP specifies the size of the ISN pool for containing ISNs and their assigned Data Storage
RABNSs. The value may be specified in bytes as a numeric value (“2048") or in kilobytes as a
value followed by “K” (“2K"). The default for LIP is 2000 bytes.

LIP can be used to decrease the number of address converter 1/Os during loading when the
USERISN=Y ES and the user-supplied | SNs are unsorted. Optimum performanceis obtained if
LIP specifies a buffer size large enough to hold all 1SNs to be processed.

The length of one input record is ISNSIZE + RABNSIZE + 1. Thusthe entry length is at least
7 bytes (the ISNSIZE of thefileis 3 and the RABNSIZE of the database is 3) and at most 9 bytes
(the ISNSIZE is 4 and the RABNSIZE is 4).

LOWNERID : Internal Owner ID Length for Multiclient File

The LOWNERID parameter specifies the length of the internal owner ID values assigned to
each record for multiclient files. Valid length values are 0-8. If the LOWNERID parameter is
not specified, its default value is the length of the owner IDs in the input file.

The specified or default value of the LOWNERID parameter determine whether afileisto be
loaded as a multiclient or anon-multiclient file. If the effective LOWNERID value is zero, the
file isloaded as anormal, non-multiclient file; if it is nonzero, thefileisloaded as amulticlient
file.

In combination with the ETID parameter, the LOWNERID parameter can be used to

. reload a non-multiclient file as a multiclient file;

325

Adabas Utilities Manual, Volume 1

increase/decrease the length of the owner ID for the file; or
remove the owner ID from the records of afile.

The following table shows the possible combinations of the LOWNERID parameter and the
owner ID length in the input file.

LOWNERID Owner ID Length Valuein Input File
Parameter Setting 0 2
0 Keep as anon-multiclient file Convert to a non-multiclient file
1 Set up multiclient file (ETID) Decrease owner 1D length
2 Set up multiclient file (ETID) Keep owner ID length
3 Set up multiclient file (ETID) Increase owner ID length

(not specified) Keep as anon-multiclient file Keep as a multiclient file

When loading a multiclient file (the specified or default value of LOWNERID is non-zero), the
ETID parameter can be specified to assign a new owner ID to all records being loaded. If the
input file already contains owner IDs and ETID is omitted, al records keep their original owner
IDs.

Where the table indicates the ETID parameter in the “Owner ID Length...0” column, the ETID
parameter is mandatory, as there are no owner 1Ds given in the input file.

LWP : Work Pool Size

326

LWP specifies the size of the work pool to be used for descriptor value sorting. The value can
be specified in bytes or kilobytes followed by a “K”. If no value is specified, the default is
1048576 bytes (or 1024K); however, to shorten ADALOD run time for files with very long
descriptors or an unusually large number of descriptors, set LWP to a higher value. To avoid
problems with the sort dataset, a smaller LWP value should be specified when loading relatively
small files.

The minimum work pool size depends on the sort dataset’s device type:

Sort Device Minimum LWP Minimum LWP

Bytes Kilobytes
2000 106496 104K
2314 090112 88K

ADALOD

Bytes Kilobytes
3375 131072 128K
3380 139264 136K
3390 159744 156K

MAXDS/MAXNI / MAXUI : Maximum Secondary Allocation

Specifies the maximum number of blocks per secondary extent allocation for Data Storage
(MAXDS), normal index (MAXNI), or upper index (MAXUI). The value specified must bein
blocks (for example, MAXNI=8000B) and cannot be more than 65535B. If no limit is specified,
no limit is assumed (the default).

MAXRECL : Maximum Compressed Record Length

MAXRECL specifies the maximum compressed record length permitted for the file. The
default is the maximum length supported by the device type being used.

MINISN : Lowest | SN to Be Allocated

This parameter specifies the lowest ISN that can be assigned in the file. The default is 1.

The main purpose of MINISN isto assign the low end of the ISN range for a component file of
an Adabas expanded file. MINISN is required when ANCHOR is specified for an expanded file.

Use MINISN to avoid wasting Associator space in files where al records are assigned 1SNs
significantly greater than 1. For example, a savings bank uses account numbers as 1SN numbers,
and the lowest account number is 1,000,001. Specifying MINISN = 1000001 stops Adabas from
allocating address converter space for ISNs 1-999999, which would be unused. For more
information, see the description of the MAXISN parameter.

MIXDSDEYV : Data Storage Mixed Device Types

NAME :

MIXDSDEV dlowsthe allocation of secondary Data Storage extents on different device types,
and therefore with different block lengths. If MIXDSDEYV is not specified (the default), Data
Storage extents for the specified file must al be on the same device type.

File Name

NAME isthe name to be assigned to the file. This name appears, along with data pertaining to
thisfile, on the Database Status Report produced by the ADAREP utility. The maximum number
of characters permitted is 16. The default name assigned is TESTFILE.

327

Adabas Utilities Manual, Volume 1

If the file name contains special characters or embedded blanks, the name must be enclosed
within apostrophes ('..."), which themselves must be doubled if one isincluded in the name; for
example, "JAN"SFILE'.

NISIZE : Normal Index Size

NISIZE specifies the number of blocks or cylinders to be assigned to the normal index. A block
value must be followed by “B” (for example, 5500B).

If the specified extent size exceeds the largest free size, ADALOD allocates as many file extents
as necessary (up to atotal of 5) to satisfy the request.

If the NISIZE parameter is omitted:

e ADALOD determines the space alocation for the normal index based on a sampling of records
taken from the input dataset. Since this calculation requires additional CPU time and 1/O
operations, Software AG recommends setting this parameter if the size is known so that no
estimation is performed.

¢ and INDEXCOMPRESSION=YES s s&t, the index size estimation made by ADALOD does not
consider the index compression asit has no knowledge of the rate of compression to be expected.
ADALOD may thus allocate a larger index than necessary.

If asmall number of recordsis being loaded and alarger number of records isto be added | ater,
the NISIZE parameter should be set to increase the Normal Index to accommodate the total
record amount. For more information, see the section LOAD File Space Allocation on page
334.

NOACEXTENSION : Limit Address Converter Extents

If NOACEXTENSION is specified, the MAXISN defined for this file cannot be increased in
the future. No additional address converter (AC) extents will be created. NOACEXTENSION
applies mainly to component files comprising Adabas expanded files; if ANCHOR is specified,
NOACEXTENSION must also be specified.

NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

328

ADALOD

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” isdisplayed and
the utility terminates with condition code 20.

NUMREC : Limit Number of Recordsto Be L oaded

NUMREC specifies the limit on the number of recordsto be loaded. If NUMREC is specified,
ADALOD stops after processing the specified number of records (unless an end-of-file
condition on the input dataset ends ADALOD operation before that time). This option is most
often used to create a subset of afile for test purposes. If this parameter is omitted, all input
records are processed.

If the input dataset contains more records than specified by NUMREC, ADALOD processes the
number of records specified by NUMREC and then ends with condition code 4.

PGMREFRESH : Program-Generated File Refresh

PGMREFRESH specifies whether a user program is allowed to perform a refresh operation on
the file being loaded. If PGMREFRESH is specified, a refresh can be made using an E1
command, or an equivalent call to the nucleus.

RESTART : Restart Interrupted ADAL OD Execution

RESTART forces an interrupted ADALOD run to be restarted, beginning with the last “restart
point” reached before the interruption. The “restart point” is the latest point of execution that
can be restored from the temp dataset.

If ADALOD isinterrupted by adefined error condition, ADALOD issues a message indicating
whether or not arestart is possible.

When restarting the ADALOD operation, the following parameters may be changed:

e TEMPSIZE can be increased to make the temp dataset larger. Note, however, that the temp
dataset content contains information necessary for the restart operation, and therefore must not
be changed;

¢ The SORTSIZE and SORTDEV parameters and the sort dataset can be changed.

No other parameters can be changed. The DDEBAND/EBAND and DDFILEA/FILEA datasets
must remain the same.

329

Adabas Utilities Manual, Volume 1

SKIPREC : Number of Recordsto Be Skipped

SKIPREC specifies the number of input records to be skipped before beginning load processing.
The default is 0 (no records are skipped).

SORTDEYV : Sort Device Type

ADALOD uses the sort dataset to sort descriptor values. The SORTDEV parameter indicates
the device type to be used for this dataset. This parameter is required only if the device type to
be used is different from that specified by the ADARUN DEVICE parameter.

TEMPDEV : Temporary Storage Device Type

ADALOD usesthe temp dataset to store intermediate data. The TEMPDEV parameter indicates
the device type to be used for this dataset. This parameter is required only if the device type to
be used is different from that specified by the ADARUN DEVICE parameter.

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

UISIZE : Upper Index Size

UISIZE specifies the number of blocks or cylindersto be assigned to the upper index. A block
value must be followed by “B” (for example, 5500B).

If the specified extent size exceeds the largest free size, ADALOD allocates as many file extents
as necessary (up to atotal of 5) to satisfy the request.

If the UISIZE parameter is omitted:

e ADALOD determines the space allocation for the upper index based on a sampling of records
taken from the input dataset. Since this calculation requires additional CPU time and 1/O
operations, Software AG recommends setting this parameter if the size is known so that no
estimation is performed.

¢ and INDEXCOMPRESSION=YES s s&t, the index size estimation made by ADALOD does not
consider the index compression asit has no knowledge of the rate of compression to be expected.
ADALOD may thus allocate a larger index than necessary.

330

UQDE :

ADALOD

If asmall number of recordsis being loaded and alarger number of records are to be added later,
the UISIZE parameter should be set to increase the upper index to accommaodate the total record
amount. For more information, see the section LOAD File Space Allocation on page 334.

Unique Descriptors

UQDE defines one or more descriptors as unique. Each descriptor specified must contain a
different value in each input record. If a non-unique value is detected during ADALOD
processing, ADALOD terminates with an error message.

If the unique descriptor (UQ) option was specified with the ADACMP dtility, the UQDE
parameter here is not required.

Adabas prevents a descriptor defined with the unique descriptor (UQ) option from being
updated with an add or update command if the update would cause a duplicate value for the
descriptor.

Note:

For Adabas expanded files, ADALOD can only detect unique descriptor violations within the
component file. If an identical value exists for a unique descriptor in one of the other component
files, ADALOD cannot detect it. You must therefore ensure that unique descriptor values remain
unique throughout an expanded file.

USERISN : User ISN Assignment

USERISN=YES indicates that the USERISN option for the loaded fileisto be in effect, and that
the ISN for each new record is being supplied by the user in the input data. If USERISN=NO,
Adabas assigns the ISN for each new record.

If USERISN is not specified, a default setting is assumed that depends on the input file itself.
If the input file was created by ADACMP with the USERISN option or by ADAULD from a
file having the USERISN option, the default for ADALOD operation is USERISN=YES;
otherwise, the default is USERISN=NO. Specifying USERISN here overrides the existing
default value.

Note:

Adabas 5.2 files initially loaded with the USERISN option do not require USERISN=YES to
again be specified when the files are reloaded; ADALOD assumes the default as described
above. However, Adabas 5.1 files initially loaded with the USERISN option must have
USERISN=YES specified whenever they are rel oaded.

331

Adabas Utilities Manual, Volume 1

VERSION : Input Data Format

Originaly, this parameter specified the Adabas version of the output (ADACMP) datasetsto be
loaded into Adabas.

Because ADALOD determines the version of the sequential input dataset itself, this parameter
isignored. It is available only for compatibility with old ADALOD jobs.

Examples

332

Example 1;

ADALOD LOAD FILE=6,MAXISN=20000,DSSIZE=20,ASSOPFAC=15,
ADALOD DATAPFAC=15, TEMPSIZE=20, SORTSIZE=10

File 6 is to be loaded. The number of records initially permitted for the file is 20,000. 20
cylinders are to be allocated for Data Storage. The Associator and Data Storage block padding
factors are both 15 percent. The temp and sort datasets are 20 and 10 cylinders, respectively.

Example 2:

ADALOD LOAD FILE=7,MAXISN=350000,ASSOPFAC=5,MINISN=100001
ADALOD DATAPFAC=15,DSSIZE=100,USERISN=YES

ADALOD TEMPSIZE=200, SORTSIZE=100

File 7 isto be loaded. The number of records initially allocated for the file is 250,000, and the
minimum is 100,001. The Associator padding factor is 5 percent. The Data Storage padding
factor is 15 percent. 100 cylinders are to be allocated for Data Storage. |SNs are contained in
the input. The temp and sort datasets are equal to 200 and 100 cylinders, respectively.

Example 3:

ADALOD LOAD FILE=8,ADAMFILE,ADAMDE='AK’

ADALOD ADAMPARM=4 , ADAMOFLOW=5, UQDE='AK’ ,MINISN=1
ADALOD MAXISN=10000,DSSIZE=20,ASSOPFAC=5, DATAPFAC=5
ADALOD TEMPSIZE=10, SORTSIZE=5

ADALOD

File 8 isto be loaded as an ADAM file. Field AK isthe ADAM key. 4 hits are to be truncated
from each value of AK before using the value to calculate the Data Storage RABN for the
record. The size of the ADAM overflow areais5 cylinders. The field AK isdefined as a unique
descriptor. The maximum number of records initially allocated for the file is 10,000. 20
cylinders are to be alocated to Data Storage, from which the five ADAM overflow cylinders
are taken. The padding factor for both the Associator and Data Storage is 5 percent. The sizes
of the temp and sort datasets are 10 and 5 cylinders, respectively.

Example 4:

ADALOD LOAD FILE=9,NAME=INVENTORY, MAXISN=5000

ADALOD DSSIZE=2000B,DSRABN=30629,NISIZE=300B,UISIZE=50B
ADALOD MAXDS=1000B, MAXNI=50B, MAXUI=1B

ADALOD INDEXCOMPRESSION=YES

ADALOD ASSOPFAC=20,DATAPFAC=10

ADALOD TEMPSIZE=10,SORTSIZE=5,UQDE="U1,U2"

File 9 isto be loaded. The text name for the file is INVENTORY. The initial space allocation
for thefileisfor 5,000 records. 2,000 blocks are to be allocated for Data Storage, beginning with
RABN 30,629. 300 blocks are to be alocated for the normal index. 50 blocks are to be allocated
to the upper index. The maximum allocations per secondary extent for Data Storage, normal
index and upper index are 1000 blocks, 50 blocks, and 1 block respectively. Theindex isto be
compressed. The padding factor for the Associator is 20 percent. The padding factor for
Data Storage is 10 percent. The sizes of the temp and sort datasets are 10 and 5 cylinders
respectively. Descriptors U1 and U2 are defined as unique descriptors.

Example 5:

ADALOD LOAD FILE=2,SECURITY

ADALOD DSSIZE=20B,MAXISN=2000,NISIZE=20B,UISIZE=5B
ADALOD TEMPSIZE=10, SORTSIZE=5

File 2 isto be loaded as an Adabas security file. The DDEBAND contents are ignored. Space
is alocated for Data Storage (20 blocks), for the address converter (2000 ISNs), the normal
index (20 blocks), and the upper index (5 blocks). The temp size is 10 cylinders, and the sort
areasize is 5 cylinders.

333

Adabas Utilities Manual, Volume 1

L OAD Data and Space Requirements

The following general information describes data requirements for LOAD operation, and how
ADALOD LOAD alocates space. For more information about space allocation, refer to the
Adabas DBA Reference Manual.

Input Data for LOAD Operations

Compressed data records produced by the ADACMP or ADAULD utility may be used as input
to ADALOD. If output from an ADAULD utility run made with the MODE=SHORT option is
used as ADALOD input, any descriptor information will be removed from the FDT, and no
index will exist for the file.

L OAD File Space Allocation

ADALOD allocates space for the normal index (NI), upper index (Ul), address converter (AC),
Data Storage, and the temp area for the file being loaded.

Index Space Allocation

334

If the NISIZE and/or the UISIZE parameters are supplied, alocation is made using the
user-supplied values. If these parameters are not supplied, ADALOD allocates space for these
indexes based on a sampling of the values present for each descriptor.

Descriptor values are sampled as follows:

ADALOD reads the compressed input, stores the recordsinto Data Storage, extracts each value
for each descriptor and writes these values to the temp dataset. Each temp block contains values
for one descriptor only. At the end of this processing phase, the following information is present:

number of values for each descriptor

number of bytes required for each descriptor

temp RABNSs used for each descriptor

For unique descriptors, the NI space requirement is equal to the temp size used. For non-unique
descriptors, the number of duplicate values must be determined. Each duplicate value's space

requirement must be estimated and then subtracted from the number of bytes required. The
result is the NI size required for the duplicate descriptor.

ADALOD

The number of duplicate values is determined by reading up to 16 temp blocks containing values
for a single descriptor. These values are sorted to determine how many are duplicates. The
resulting count of duplicate values is multiplied by the factor:

total number of values
number of values in the sample

The result is the estimated number of identical descriptor values present in the entirefile for this
descriptor. This space requirement is subtracted from the temp size estimate.

2. The upper index (Ul) size is computed after all normal index (NI) and temp sizes are available.

3. The NI and Ul sizes are each multiplied by the result of:
(MAXISN = MINISN) + 1
number of records being loaded

For example, if 10000 records require 10 blocks of Ul space and 500 blocks of NI space with
MINISN = 1 (the default), the specification of MAXISN = 60000 causes 60 Ul blocks and 3000
NI blocks to be alocated:

10 . 60000

m = 60 Ul Blocks

. 60000 _
500 10000 — 3000 NI Blocks

However, this calculation is not made if USERISN=YES isin effect.

By setting MAXISN appropriately, it istherefore possible to increase the size allocation for files
in which a small number of records are being loaded and for which a much larger number of
records are to be added subsequently.

If the NISIZE and UISIZE parameters have been specified, the space allocation is made using
unassigned Associator RABNS. If the NIRABN and/or the UIRABN parameters are supplied,
space allocation is made at the user-specified RABN.

Address Converter Space Allocation

The address converter alocation is based on the MAXISN and MINISN values for the file.
ADALOD allocates the blocks needed to contain the number of bytes calculated by the formula
RABNSIZE « ((MAXISN — MINISN) + 1). If the ACRABN parameter has been specified,
ADALOD alocates the address converter beginning with the user-specified block number;
otherwise, it uses unassigned Associator RABNS.

335

Adabas Utilities Manual, Volume 1

Data Storage Space Allocation

Data Storage alocation is based upon the value specified with the DSSIZE parameter. If the
DSRABN parameter has been specified, the allocation is made beginning with the
user-specified block number; otherwise, unassigned Data Storage RABNS are used.

If there are different device types in the database, Data Storage allocation can be forced on a
specified device type by specifying DSDEV. The MIXDSDEV parameter permits Data Storage
allocation on different device types, assuming the device types can store records with the length
specified by MAXRECL.

Temp Area Space Allocation

For each descriptor, ADALOD generates alist of the values and I SN's of the records containing
the value, and writes this information to the temp dataset. The space required for descriptor
information is equal to the sum of the space required for each descriptor. The space needed for
each descriptor can be calculated using the following formula:

SP =N e NPE ¢ NMU * (L + 4)
—where

SP is the space required for the descriptor (in bytes).
N is the number of records being loaded.

NPE isthe average number of occurrences, if the descriptor is contained in a periodic
group. If not in a periodic group, NPE equals 1.

NMU isthe average number of occurrences, if the descriptor is a multiple-value field. If
not a multiple-value field, NMU equals 1.

L is the average length (after compression) of each value for the descriptor.

Example:

A file containing 20,000 records is being loaded. The file contains two descriptors (AA and CC).
Descriptor AA has 1 value in each record and the average compressed value length is 3 bytes.
Descriptor CC has an average of 10 values in each record and the average compressed value
length is equal to 4 bytes.

Field Definitions:

01,AA,5U,DE
01,CC,12,A,DE,MU

336

ADALOD

e Space requirement for AA.

SP =20,0001°(3+4)
SP = 140,000 bytes

e Space requirement for CC.

SP = 20,000 ¢ 10 * (4 + 4)
SP = 1,600,000 bytes

e Total space requirement = 1,740,000 bytes.

The number of cylinders required may be calculated by dividing the number of blocks required
by the number of blocks per cylinder.

For a model 3380 device type:

1,740,000 bytes

Blocks required = 7476 bytes per block

= 232 +, or 233 blocks

233 blocks

Cylinders required = 90 blocks per cylinder

= 2 +, or3cylinders

Associator Updating by LOAD

ADALOD then sorts the descriptor values collected in the input phase and enters the sorted
values into the normal index and upper index. If the allocated index space is not enough for the
normal index or upper index, ADALOD allocates up to four additional extents.

Each additional extent allocated is equal to about 25 percent of the total current space allocated
to the index. If insufficient space is available for the additional extent or the maximum of five
extents has already been allocated, ADALOD terminates with an error message.

L oading Expanded Files

An expanded file is made up of a series of normal Adabas physical files. The number sequence
of the files within the expanded file is arbitrary. The first file may be file 53; the second, file
127; thethird, 13, and so on. ISNs assigned to each component file must be unique; no two files
can contain the same ISN. The ISN range over al files must be in ascending order; however,
there can be gaps in the sequence.

337

Adabas Utilities Manual, Volume 1

The total number of records in an expanded-file chain cannot exceed 4,294,967,294.

The sequence of physical component files that build an expanded logical file is defined by the
ANCHOR parameter, which defines the first component file (anchor) in the sequence. The
anchor fileisloaded just as any other Adabasfile; each additional component file must be loaded
with the ANCHOR parameter referring to the anchor file. ADALOD inserts the new physical
file into the existing expanded file chain according to the range of ISNs assigned to the added
file. Each added component file must also specify the NOACEXTENSION parameter when
being loaded to prevent Adabas from assigning new 1SNs to a component file.

ADALOD processes only the anchor file and the single physical (component) files that compose
an expanded file, and not the complete expanded file itself.

338

ADALOD

Loading Data into an Expanded File

To load data (for example, several million records) into different physical files, the input data
must first be divided into several DDEBAND/EBAND input files. The DDEBAND/EBAND
file data may be mapped into the component files using the SKIPREC and NUMREC
parameters; however, one-to-one mapping without skipping or limits is recommended. This
avoids the need to read records that will not be used later, and thus improves performance.

Examples:

The following examples, which show parts of one or more jobs for loading an expanded file,
illustrate the mapping of DDEBAND/EBAND file data into component files:

/ /DDEBAND DD DSN=LOAD.DATA.FILE1, ...

/ /DDKARTE DD *

ADALOD LOAD FILE=40,NAME='XXX Partl’

ADALOD MINISN=1,MAXISN=10000000, NOACEXTENSION
ADALOD NUMREC=10000000

ADALOD DSSIZE=...,NISIZE=...,UISIZE...
ADALOD SORTSIZE=...,TEMPSIZE=...

/ /DDEBAND DD DSN=LOAD.DATA.FILE1, ...

/ /DDKARTE DD *

ADALOD LOAD FILE=41,NAME='XXX Part2’,6ANCHOR=40
ADALOD MINISN=10000001,MAXISN=20000000, NOACEXTENSION
ADALOD NUMREC=10000000, SKIPREC=10000000
ADALOD DSSIZE=...,NISIZE=...,UISIZE...
ADALOD SORTSIZE=...,TEMPSIZE=...

/ /DDEBAND DD DSN=LOAD.DATA.FILE2, ...

/ /DDKARTE DD *

ADALOD LOAD FILE=35,NAME='XXX Part2’,ANCHOR=40
ADALOD MINISN=20000001,MAXISN=30000000, NOACEXTENSION
ADALOD NUMREC=10000000

ADALOD DSSIZE=...,NISIZE=...,UISIZE...
ADALOD SORTSIZE=...,TEMPSIZE=...

339

Adabas Utilities Manual, Volume 1

L oading Multiclient Files

Note:
A multiclient file cannot be made part of an expanded file, and an expanded file cannot be
converted to a multiclient file.

A multiclient file stores records for multiple users or groups of users. It dividesthe physical file
into multiple logical files by attaching an owner 1D to each record. Each user can access only
the subset of records that is associated with the user’s owner ID.

For any installed external security package such as RACF or CA-Top Secret, a user is still
identified by either Natural ETID or LOGON ID. The owner ID isassigned to auser ID. A user
ID can have only one owner ID, but an owner ID can belong to more than one user.

The ADALOD LOAD function uses the LOWNERID and ETID parameters to support the
migration of an application from a standard to a multiclient environment. The parameters work
together to define owner 1Ds and determine whether afile is a multiclient file.

LOWNERID specifies the length of the internal owner 1D values assigned to each record for
multiclient files. In combination with the ETID parameter, the LOWNERID parameter can be
used to reload a standard file as a multiclient file, change the length of the owner ID for thefile,
or remove the owner 1D from the records of afile.

If the LOWNERID parameter is not specified, the length of the owner ID for the input file (if
any) remains the same.

ETID assigns a new owner ID to all records being loaded into a multiclient file, and must be
specified if the input file contains no owner IDs; that is, the input file was not unloaded from
a multiclient source file.

Examples of L oading/Updating Multiclient Files

340

ADALOD LOAD FILE=20,LOWNERID=2,NUMREC=0

Creates file 20 as amulticlient file. The length of the internal owner 1D istwo bytes, but no actual
owner ID (ETID) is specified. No records are actually loaded in the file (NUMREC=0).

ADALOD

ADALOD LOAD FILE=20,LOWNERID=2,ETID=USER1

Creates file 20 as amulticlient file, load all supplied records, and assign them to user USERL.
The length of the internal owner ID is two bytes.

ADALOD UPDATE FILE=20,ETID=USER2

Performs a mass update to add records to file 20, amulticlient file. Load all the new records and
assign them to USER2.

UPDATE : Add/Delete Records

Warning:

If ADALOD UPDATE ends abnormally (due to insufficient space, for example), updates made
to the file before the abnormal ending cannot be “ backed out”. Software AG therefore
recommends that you perform ADASAV SAVE on the file before you run ADALOD UPDATE.

The UPDATE function adds and/or deletes alarge number of records (ISNs) to and/or from an
existing file. A single UPDATE operation can both add and delete ISNs.

Records to be added must be in compressed (ADACMP or ADAULD output) form and be in
the DDEBAND/EBAND input dataset.

ISNs to be deleted must be specified by either or both of the DDISN and DELISN parameters.
Notes:

1. The UPDATE function cannot be used with an Adabas systemfile if the Adabas nucleusis active,
and cannot be used to change the checkpoint or security files.

2. A multiclient file cannot be made part of an expanded file, and an expanded file cannot be
converted to a multiclient file.

341

Adabas Utilities Manual, Volume 1

ADALOD UPDATE FILE=file-number
SORTSIZE=size
TEMPSIZE=size
[DDISN]
[DELISN=isn-list]
[DSREUSE={ YESINO }]
[ETID=multiclient-file-owner-id]
[ISNREUSE={ YES|NO }]
[LIP={isn-pool-size|2000 }]
[LWP={ work-pool-size|1048576 }]
[MAXISN=number
[ACRABN=starting-rabn]
[ASSOVOLUME="Associator-extent-volume’]]
[INOUSERABEND]
[NUMREC=number]
[PASSWORD=password]
[RESTART]
[SAVEDREC]
[SKIPREC={ number|0 }]
[SORTDEV={ device-type | ADARUN-device }]
[TEMPDEV={ device-type | ADARUN-device }]
[TEST]
[USERISN={ YES|NO }]

Essential Parameters
FILE : File Number

FILE specifies the number of the file to be updated. If a component file of an Adabas expanded
fileis specified, only that component file is updated; the other component files must be updated
in separate UPDATE operations.

SORTSIZE : Sort Size
SORTSIZE is the number of blocks or cylinders available for the sort dataset.

TEMPSIZE : Temporary Storage Size
TEMPSIZE is the number of blocks or cylinders available for the temp dataset.

342

ADALOD

Optional Parametersand Subparameters

ACRAB

N : Starting RABN for Address Converter

ACRABN causes additional space allocation for the address converter to begin at the specified
RABN. ACRABN is effective only if MAXISN specifies an increase for the file's address
converter.

ASSOVOLUME : Associator Extent Volume

DDISN :

Note:
The value for ASSOVOLUME must be enclosed in apostrophes.

ASSOVOLUME is effective only if MAXISN specifies an increase for the file's address
converter.

ASSOVOLUME specifies the volume on which the file's address converter extents is to be
allocated. If the requested number of blocks cannot be found on the specified volume, ADALOD
retries the allocation while disregarding the ASSOVOLUME parameter.

If ACRABN is specified, ADALOD ignores the ASSOVOLUME value when allocating the
address converter extent type. If ASSOVOLUME is not specified, the file's Associator space
is allocated according to ADALOD’s default allocation rules.

Read I SNsto Be Deleted from Sequential Dataset

If DDISN is specified, ISNs to be deleted are read from the DDISN/ISN sequential dataset. If
both the DDISN and DELISN parameters are specified, the ISNs from the two lists are merged.
The DDISN/ISN dataset must have variable or variable blocked records. See the section
Formats for Specifying | SNs on page 349 for more information.

When the UPDATE function is executed, all ISNs are first read and stored in the ISN pool in
the order they occur. The size of the ISN pool (specified by LIP) must be large enough to store
all data read from DDISN/ISN.

The records are then sorted in ascending order. Overlapping ranges and duplicate | SNs are not
allowed. 1SNs not found during processing are ignored.

When deleting ISNs from an Adabas expanded file, you can specify the complete ISN list for
all component files; the UPDATE function automatically selects only the ISNs that are
appropriate for the component file being processed.

343

Adabas Utilities Manual, Volume 1

DELISN : ISNsto Be Deleted

DELISN specifies alist of the ISNs of records to be deleted. If both DDISN and DELISN are
specified, the ISNs from the two lists are merged. A range list may be specified as:

DELISN=10-80,90,100-110

Overlapping ranges and duplicate |SNs are not allowed. You can specify, a most, 32 single ISNs
or SN ranges. When deleting ISNs from an Adabas expanded file, you can specify the complete
list for all component files. The UPDATE function selects the appropriate ISNs from the list and
deletes them from the component file.

DSREUSE : Data Storage Reusage

DSREUSE indicates whether or not Data Storage space that becomes available as aresult of a
record deletion is to be reused.

This parameter is in effect for the execution of the UPDATE function only. The permanent
setting of DSREUSE is not changed. That permanent setting is the default if this value is not
specified.

ETID : Multiclient File Owner 1D

344

The ETID parameter assigns anew owner 1D to all records being added to an existing multiclient
file. The owner ID is automatically adjusted to the length for owner IDs specified by
LOWNERID when the multiclient file was last loaded. If no ETID is specified, all loaded
records keep their owner 1Ds specified on the input source.

The ETID parameter must be specified if the existing file is multiclient and the input file was
not unloaded from a muilticlient file. ETID must not be specified if the existing file is a
non-multiclient file.

Note:
If the ETID parameter is used, the ADALOD utility requires an active nucleus. The nucleus will
translate the ETID value into the internal owner 1D value.

ADALOD

ISNREUSE : SN Reusage
ISNREUSE indicates whether the ISN for a deleted record can be reassigned to a new record.

This ISNREUSE setting is in effect only during execution of the UPDATE function. The
permanent ISNREUSE setting is unchanged. The permanent setting is the default if this value
is not specified.

LIP: 1SN Work Pool Size

LIP specifies the size of the work pool for containing I1SNs to be deleted. Four bytes per ISN
and eight bytes per ISN range are required in this pool. The value may be specified in bytes as
anumeric value (“2048") or in kilobytes as avalue followed by “K” (“2K™). The default for LIP
is 2000 bytes.

LWP : Work Pool Size

LWP specifies the size of the work pool to be used for descriptor value sorting. The value can
be specified in bytes or kilobytes followed by a “K”. If no value is specified, the default is
1048576 bytes (or 1024K); however, to shorten ADALOD run time for files with very long
descriptors or an unusually large number of descriptors, set LWP to a higher value. To avoid
problems with the Sort dataset, a smaller LWP value should be specified when updating
relatively small files.

The minimum work pool size depends on the sort dataset’s device type:
Sort Device Minimum LWP Minimum LWP

Bytes Kilobytes
2000 106496 104K
2314 090112 88K
3375 131072 128K
3380 139264 136K
3390 159744 156K

MAXISN : Highest ISN to Be Allocated to the File

The MAXISN parameter may be used to specify anew setting for the file. This parameter should
be used if the current record count plus the number of ISNs (records) to be added exceeds the
current MAXISN setting. The specified larger value determines the additional space required
for the address converter, and causes ADALOD to allocate a new extent. A smaller MAXISN
value causes no change in the address converter space.

345

Adabas Utilities Manual, Volume 1

Note:
The MAXISN setting for a file cannot be increased if the file was last loaded with
NOACEXTENSION active.

The MAXISN setting should be increased by an amount suitable for all planned expansion; this
avoids using up the address converter extent too quickly, and alleviates the need to either unload
and reload the file or run the ADAORD REORFASSO utility because the maximum of five
address converter extents has been alocated.

With the optional ACRABN parameter, the beginning of the new address converter extent can
be set to a specific RABN number. See the ACRABN parameter description for more
information.

If the MAXISN parameter is omitted, ADALOD allocates new address converter extents only
if the old MAXISN value is exceeded.

NOUSERABEND : Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” isdisplayed and
the utility terminates with condition code 20.

NUMREC : Limit Number of Recordsto Be Added

NUMREC limits the number of records to be added. If NUMREC is specified, ADALOD
processing terminates after adding the number of records specified (unless an end-of-file
condition on the input dataset has already caused ADALOD termination). If this parameter is
omitted, all input records are added.

If the input dataset contains more records than specified by NUMREC, ADALOD adds the
number of records specified by NUMREC and then terminates with condition code 4.

PASSWORD : File Password

If the file to be updated is password-protected, the parameter must be used to provide a valid
password. There is no default for PASSWORD.

346

ADALOD

RESTART : Restart Interrupted ADAL OD Execution

RESTART forces an interrupted ADALOD run to be restarted, beginning with the last “restart
point” reached before the interruption. The “restart point” is the latest point of execution that
can be restored from the Temp dataset.

If ADALOD isinterrupted by adefined error condition, ADALOD issues a message indicating
whether or not arestart is possible.
When restarting the ADALOD operation, the following parameters may be changed:

e TEMPSIZE can be increased to make the temp dataset larger. Note, however, that the temp
dataset contents must not be changed because it contains information necessary for the restart
operation;

e The SORTSIZE and SORTDEV parameters and the sort dataset can be changed.

No other parameters can be changed. The DDEBAND/EBAND, DDFILEA/FILEA and
DDISN/ISN datasets must remain the same.

SAVEDREC : Save Deleted Records on a Sequential File

SAVEDREC indicates that deleted records are to be written to a sequential dataset. The format
of the dataset is identical to that created by the ADAULD utility with the MODE=SHORT
option.

SKIPREC : Number of Recordsto Be Skipped

SKIPREC is the number of input records to be skipped before beginning to process updates. The
default is O (no records are skipped).

SORTDEYV : Sort Device Type

ADALOD uses the sort dataset to sort descriptor values. The SORTDEV parameter indicates
the device type to be used for this dataset. This parameter is required only if the device type to
be used is different from that specified by the ADARUN DEVICE parameter.

TEMPDEYV : Temporary Storage Device Type

ADALOD usesthe temp dataset to store intermediate data. The TEMPDEV parameter indicates
the device type to be used for this dataset. This parameter is required only if the device type to
be used is different from the standard device type assigned to Temp by the ADARUN DEVICE
parameter.

347

Adabas Utilities Manual, Volume 1

TEST : Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

USERISN : User ISN Assignment

USERISN=YES indicates that the USERISN option for the file is to be in effect, and that the
ISN for each new record is being supplied by the user in the input data. If USERISN=NO,
Adabas assigns the ISN for each new record.

The specified USERISN setting is effective only while the UPDATE function is executing. The
permanent USERISN setting is not changed, and is the default if this parameter is not specified.

When performing an ADALOD UPDATE function on a file with a hyperdescriptor for which
the hyperexit changed the ISNs of descriptor values, USERISN=YES is no longer required for
the add/load operation.

When adding records from a non-USERISN=YES file, the ADALOD parameter
USERISN=NO must be specified and the file to be updated must have the USERISN option.
This feature is useful for Adabas Text Retrieval (TRS).

Examples

Example 1:

ADALOD UPDATE FILE=6,MAXISN=18000
ADALOD TEMPSIZE=10, SORTSIZE=5

Records are to be added to file 6. The MAXISN for the file is to be increased to 18,000.

Example 2:

ADALOD UPDATE FILE=7,TEMPSIZE=10,
ADALOD ETID=USER3, SORTSIZE=5

Records with user’s owner ID of USER3 are to be added to multiclient file 7.

348

ADALOD

Example 3:

ADALOD UPDATE FILE=8,DELISN=1000-1999,5000-5999
ADALOD TEMPSIZE=10, SORTSIZE=5

The records with 1ISNs 1,000 to 1,999 and 5,000 to 5,999 are to be deleted from file 8. If an input
dataset is provided, records are to be added.

Example 4:

ADALOD UPDATE FILE=6

ADALOD DDISN, SAVEDREC

ADALOD TEMPSIZE=10, SORTSIZE=5

Records are to be deleted from file 6. The | SNs of the records to be deleted are contained in an
input dataset. The deleted records are to be saved on an output dataset.

Example 5:

ADALOD UPDATE FILE=6,DDISN,LIP=20K,SKIPREC=500
ADALOD TEMPSIZE=5, SORTSIZE=10

Records are to be added and deleted from file 6. The ISNs which identify the records to be
deleted are contained in an input dataset (DDISN). The size of the ISN pool is set to 20K. The
first 500 records on the input dataset are to be skipped.

Formatsfor Specifying | SNs

There are two formats for specifying ISNs in the DDISN or ISN dataset. The first format can
be used in all cases where only 31-bit ISNs are specified. A record can contain amix of single
ISNs and ranges of ISNs.

The second format supports 32-hit ISNs and can only be used with Adabas version 6 and above.
Each record can specify either single ISNs (indicated by X*00000000" in the first fullword) or
ranges of 1SNs (indicated by X' FFFFFFFF in the first fullword).

If the first fullword in arecord contains a value other than X 00000000 or X‘FFFFFFFF, it is
assumed to be the 31-bit format. The DDISN/ISN dataset can contain records in both formats.

349

Adabas Utilities Manual, Volume 1

Format 1: 31-Bit Format
A single ISN requires 4 bytes. Set the high-order bit to 0 and specify the ISN in bits 01-31:

0] ISN |
b
Bit 00 Bits 01-31

A range of ISNs requires 8 bytes. In the first four bytes, specify the first ISN in the range as a
single ISN; in the next four bytes, set the high-order bit to 1 and specify the last ISN:

0| FROM—ISN |1 | TO-ISN |
—

Bits 00-31 Bits 32-63

The following example shows a variable-length record containing the equivaent of
DELISN=10-80,90,100-110:

| 0018/ 0000 0000000A | 80000050 | 0000005A | 00000064 | 8000006E |

[0 A A

(unused) ISNs 10-80 ISN 90 ISNs 100-110
Record length

Format 2 : 32-Bit Format

In the 32-bit format, the first fullword in each record indicates whether the record contains
single ISNs or ranges of ISNs. To indicate single ISNs, put zero in the first fullword
(X*00000000'); to indicate ranges of 1SNs, put —1 (X' FFFFFFFF). In the following example,
the first record contains single I1SNs; the second record contains ranges. The two records are
identical except for the indicator in the first fullword.

350

ADALOD

Equivalent of DELISN=80,90,100,110:
[0018| oooolooooooooloooooosol0000005A| 00000064 0000006E |

Indlcates [[[[
smgle ISN(s)

(unused) ISN80 ISN 90 ISN 100 ISN 110
Record length

Equivalent of DELISN=80-90,100-110:
[0018| ooool FFFFFFFF|OOOOOO50|OOOOOO5A| 00000064 0000006E |
Indlcates [‘
ISN range(s) I—
(unused) ISNs 80-90 ISNs 100-110
Record length

UPDATE Data and Space Requirements

The following general information describes data requirements for UPDATE operation, and
how ADALOD UPDATE allocates space. For more information about space allocation, refer
to the Adabas DBA Reference Manual.

Input Data for UPDATE Operations

Records to be added must be in the form of compressed data records produced by the ADACMP
or ADAULD utility. The field definitions used for the ADACMP run must agree with the
definitions for the file to which the records will be added as contained in the field definition table
(FDT).

Note:

Records being added to a ciphered file must already be encrypted using the same cipher code
as was used for the records already in the file.

The ISNs of records to be deleted may be provided with the DELISN parameter and/or in an
input dataset. If provided in an input dataset, each ISN must be provided as a 4-byte binary
number. The dataset must have the record format VARIABLE BLOCKED. If desired, al ISNs
to be added to or deleted from an Adabas expanded file can be specified; the UPDATE function
selects the appropriate ISNs for the component file being processed.

351

Adabas Utilities Manual, Volume 1

UPDATE Space Allocation

If records are to be added and alarger MAXISN value has been specified, an additional address
converter extent will be allocated by ADALOD. The size of the new extent is based on the
difference between the new MAXISN and the previous MAXISN setting. If either insufficient
space is available for the new extent or the maximum of five extents has already been allocated,
processing ends with an error message.

If an additional Data Storage extent is required, ADALOD allocates an additional extent equal
to approximately 25 percent of the total size of the Data Storage extents currently allocated to
thefile. Asfor the address converter, processing ends with an error message if either sufficient
space is not available for the added extent or the maximum of five extents has already been
allocated.

Generating UPDATE Descriptor Information

When adding records, ADALOD UPDATE generates a list of all descriptor values and the
corresponding 1SNs of the new records, and writes this information to the temp dataset.

Associator Updating with UPDATE

352

Before processing the input, ADALOD UPDATE copies the file's existing normal index to the
temp dataset, but removes the descriptor values of any ISNs to be deleted.

ADALOD sorts the information written to temp during the input phase and merges the sorted
values with the current normal index. The normal index is reordered during this process, and
the Associator block padding factor is reestablished for each block. A new upper index isthen
created.

Empty space in partialy filled blocks resulting from descriptor updating is reused. This can
increase the number of empty blocks at the end of theindex. Although one or more normal index
and/or upper index extents may become empty as the result of the reorder process, ADALOD
does not condense, delete, or change the size of these extents.

If new free space is needed for the normal index or upper index, ADALOD allocates an
additional extent (or extents). Each additional extent allocated is equal to approximately 25
percent of the total current space allocated to the index. If insufficient spaceis available for the
additional extent or if the maximum of five extents has aready been allocated, ADALOD
terminates with an error message.

ADALOD

M ass Updates of Expanded Files

Using ADALOD UPDATE for a mass update to an expanded file, records must be added to or
deleted from each component file individually. However, each component file can be processed
using the same ADALOD commands.

When deleting arecord with DELISN or DDISN, the complete list of ISNs to be deleted from
all component files can be supplied. ADALOD automatically selects only the ISN values from
the specified range that is appropriate for the component file currently being processed.

The same is true when adding new records with USERISN=YES.

When new expanded file records are being added with USERISN=NO but no free ISN isfound,
the loader cannot allocate a new address converter extent since the ISN range cannot be
increased (NOACEXTENSION is active for all component files). Instead, ADALOD creates
the index as though end-of-file had been reached. The remaining records not loaded may be
added later to another component file using the SKIPREC parameter.

ADALOD does not check for unique descriptor values across component file boundaries.

Example:

The following is an example for performing a mass update to an expanded file (only the relevant
parts of the complete jobs are shown):

/ /DDEBAND DD DSN=MOREDATA.LOAD.PART1-2, ...

/ /DDKARTE DD *

ADALOD UPDATE FILE=40,USERISN=YES

ADALOD DELISN=9000001-9500000,12000001-14000000
ADALOD SORTSIZE=...,TEMPSIZE=...

/ /DDEBAND DD DSN=MOREDATA.LOAD.PART1-2, ...

/ /DDKARTE DD *

ADALOD LOAD FILE=41,USERISN=YES

ADALOD DELISN=9000001-9500000,12000001-14000000
ADALOD SORTSIZE=...,TEMPSIZE=...

353

Adabas Utilities Manual, Volume 1

L oader Storage Requirements and Use

Static Storage

Static Type* Size

Modules ADARUN, ADALOD A approximately 180 kilobytes

Dynamic Storage

Dynamic Type* Size

Sort work pool A LWP

General work pool A 6 (Associator block size)

I/O buffer for Associator A Associator block size

ISN pool A LIP

I/O buffer for Data Storage A Data Storage block size

AC bitmap A 4K bytes

I/O buffer for temp A temp block size

DVT splitting A tempblock size® number of descriptors
Internal descriptor table A number of descriptors ® 74

I/0 buffer for DDEBAND/EBAND O DDEBAND/EBAND block size
I/0 buffer for DDOLD/OLD O DDOLD/OLD block size

1/0O buffer for DDISN/ISN data O DDISN/ISN block size

I/O buffer if records must be O DDFILEA/FILEA block size

written to temp overflow

* Type A is always used; type O is used only if needed.

354

ADALOD

Temp Dataset Space Usage

ADALOD uses the temp dataset to store the following information:
e restart information;
e Data Storage RABN/ISN for each record to be deleted (UPDATE only);
e contents of the normal index at the start of the operation (UPDATE only);
e descriptor values obtained from the input dataset;
e ADAM overflow area (ADAM files only).

Sequential Temp Dataset

If the temp dataset isfilled while collecting descriptor values from the input dataset, ADALOD
temporarily writes the remaining descriptors to the sequential temp file DD/FILEA (if specified

in the JCL). The descriptors are later read back in when the new index is built.

If actually called, DD/FILEA makes ADALOD operation considerably slower than specifying
atemp dataset that is large enough to hold all descriptor values. The DD/FILEA TEMP dataset
should normally be used only asa“ safety net” to ensure adequate space for all descriptors during
ADALOD operation. Specifying the DD/FILEA temp file therefore avoids an ADALOD

ABEND caused by atemp area overrun.

Notes:

ADALOD writes only descriptor values from the DD/EBAND input file to DD/FILEA.

The normal temp dataset must be large enough to hold all values for each single descriptor.

If the UPDATE operation accesses a file that is coupled, uncouple the files, using ADADBS or

Online Services and try the UPDATE again.

355

Adabas Utilities Manual, Volume 1

ADALOD Space/Statistics Report

During LOAD or UPDATE operation, ADALOD prints a report on the message output dataset
(DDDRUCK for MVS and VM systems, SY S009 for V SE systems, or SY SOUT for BS2000).
The report shows the following information:

e ADALOD function executed (LOAD or UPDATE), and the database/file affected;

e Estimated NI/UI sizes (shown for the LOAD function only if the NI/UISIZE parameters were
not specified);

e Available and used file space, by Adabas component (shown for the LOAD function only);
e Current RABNs assigned for the file (shown for the LOAD function only);
e File processing statistics (records processed and system storage used).

Example of the ADALOD LOAD report:

PARAMETERS :

ADALOD LOAD FILE...

FUNCTION TO BE EXECUTED:

LOAD FILE NUMBER 7 (MYOWNFILE)

INTO DATABASE 0013 (MYBESTDB)

AVAILABLE SPACE: (LOAD function only)
I FILE I DEV I NUMBER OF I FROM TO I
I LAY- I TYPE I BLOCKS I RABN RABN I
I oUT I I I I
I-————- I-——————- I-——— T I
I ASSO I 3380 I 2695 I 137 2831 I
I DATA I 3380 I 1339 I 3 1341 I

ESTIMATED NORMAL INDEX SIZE = 37 BLOCKS
ESTIMATED UPPER INDEX SIZE = 8 BLOCKS

356

TOP ISN = 773,

I FILE I DEV

MAX ISN EXPECTED = 1335

ADALOD

UNUSED
SPACE
(BLOCKS)

PROCESSING STAT

773
14

0

0
51824

I LIST I ALLOC I FROM

I TYPE I SPACE I RABN RABN
I I (BLOCKS) I

I AC I 2 I 137

I UI I 8 I 139

I NI I 37 I 147

I DS I 60 I 3

ISTICS:

INPUT RECORDS PROCESSED

BLOCKS USED ON TEMP-DATASET (0%)
BLOCKS USED ON SORT PART 1 (0%)
BLOCKS USED ON SORT PART 2 (0%)

BYTES OF STORAGE USED TO STORE RECORDS

357

Adabas Utilities Manual, Volume 1

JCL/JCS Requirements and Examples

This section describes the job control information required to run ADALOD with BS2000,
0S/390 or Z/OS, VM/ESA or zZ/VM, and V SE/ESA systems and shows exampl es of each of the
job streams.

Note:
When running with the optional Recovery Aid (RLOG), all temporary datasets must also be
cataloged in the job control.

Collation with User Exit

358

If a collation user exit is to be used during ADALOD execution, the ADARUN CDXnn
parameter must be specified for the utility run.

Used in conjunction with the universal encoding support (UES), the format of the collation
descriptor user exit parameter is

ADARUN CDXnn=exit-name

—where

nn is the number of the collation descriptor exit, a two-digit decimal integer in
the range 01-08 inclusive.

exit-name isthe name of the user routine that gets control at the collation descriptor
exit; the name can be up to 8 characters long.

Only one program may be specified for each collation descriptor exit. Up to 8 collation
descriptor exits may be specified (in any order). See the DBA Reference Manual for more
information.

ADALOD

ADARUN parameters
ADALOD parameters
ADARUN messages

ADALOD messages

Notes:

SYSDTA/ DDCARD
SYSDTA/ DDKARTE
SYSOUT/ DDPRINT

SYSLST/ DDDRUCK

BS2000

Dataset Link Name Storage More Information

Associator DDASSORN disk

Data Storage DDDATARN disk

Work DDWORKR1 disk

Temp area DDTEMPR1 disk

Temp overflow DDFILEA disk/tape Stores descriptor values if the

(optional) temp dataset is too small

Sort area DDSORTR1 disk With large files, split the sort

Sort area DDSORTR?2 disk area across two volumes 1

Recovery log (RLOG) DDRLOGRL1 disk Required when using the
recovery log option

Compressed data DDEBAND disk/tape Output of ADACMP or
ADAULD utility

ISNs to be deleted DDISN disk/tape 1SNsto be deleted 2

Deleted records DDOLD disk/tape Deleted records, if any 3

Operations Manual

ADALOD report, see also
Messages and Codes

Messages and Codes

1. Performance can be improved when sorting large files if the sort dataset either occupies two
volumes, or if two sort datasets are specified. Both datasets must be on the same device type
(SORTDEV parameter), and each must be exactly half the size specified by the SORTSZE
parameter.

2. Four bytes per ISN, REC-FORM=VB, BUFF-LEN as in sequential file description, REC-SZE
maximum eguals BUFF-LEN — 4. (In ISP format, REC-FORM is RECFM; BUFF-LEN is
BLKSZE; and REC-SZE is LRECL.)

3. RECFORM=VB, BUFF-LEN as in sequential file description, REC-SZE maximum equals
BUFF-LEN — 4. (In ISP format, REC-FORM is RECFM; BUFF-LEN is BLKSZE; and
REC-SZE is LRECL.)

359

Adabas Utilities Manual, Volume 1

ADALOD JCL Example(BSZOOO)
Load File

In SDF Format:

/ .ADALOD LOGON

/MODIFY-TEST-OPTIONS DUMP=YES

/REMARK *

/REMARK * A D A L O D LOAD FILE

/REMARK *

/ASS-SYSLST L.LOD.LOAD

/ASS-SYSDTA *SYSCMD

/SET-FILE-LINK DDLIB,ADAvrs.MOD

/SET-FILE-LINK DDASSOR1,ADAYyyyy.ASSO, SHARE-UPD=YES
/SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA, SHARE-UPD=YES
/SET-FILE-LINK DDWORKR1,ADAyyyyy.WORK, SHARE-UPD=YES
/SET-FILE-LINK DDTEMPR1,ADAyyyyy.TEMP
/SET-FILE-LINK DDSORTR1,ADAYyyyy.SORT
/START-PROGRAM *M (ADA.MOD, ADARUN) , PR-MO=ANY

ADARUN PROG=ADALOD, DB=yyyyy, IDTNAME=ADABASS5B
ADALOD LOAD FILE=1

ADALOD NAME= TESTFILE-1

ADALOD MAXISN=10000,DSSIZE=10

ADALOD TEMPSIZE=100, SORTSIZE=50

/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/ .ADALOD LOGON

/OPTION MSG=FH,DUMP=YES

/REMARK *

/REMARK * A D A L O D LOAD FILE

/REMARK *

/SYSFILE SYSLST=L.LOD.LOAD

/FILE ADA.MOD,LINK=DDLIB

/FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
/FILE ADAyyyyy.DATA ,LINK=DDDATARI, SHARUPD=YES
/FILE ADAyyyyy.WORK , LINK=DDWORKR1, SHARUPD=YES
/FILE ADAyyyyy.TEMP , LINK=DDTEMPR1

/FILE ADAyyyyy.SORT ,LINK=DDSORTR1

/FILE CMP.AUS, LINK=DDEBAND

360

Update

/EXEC (ADARUN, ADA.MOD)

ADARUN PROG=ADALOD, DB=yyyyy, IDTNAME=ADABASS5B
ADALOD LOAD FILE=1

ADALOD NAME= TESTFILE-1

ADALOD MAXISN=10000,DSSIZE=10

ADALOD TEMPSIZE=100,SORTSIZE=50

/LOGOFF NOSPOOL

In SDF Format:

/ .ADALOD LOGON

/MODIFY-TEST-OPTIONS DUMP=YES

/REMARK *

/REMARK * A D A L O D LOAD FILE
/REMARK *

/DELETE-FILE LOD.ISN

/SET-JOB-STEP

/CREATE-FILE LOD.ISN, PUB (SPACE=(48,48))
/SET-JOB-STEP

/DELETE-FILE LOD.OLD

/SET-JOB-STEP

/CREATE-FILE LOD.OLD, PUB (SPACE=(480,48))
/SET-JOB-STEP

/ASS-SYSLST L.LOD.LOAD

/ASS-SYSDTA *SYSCMD

/SET-FILE-LINK DDLIB,ADAvrs.MOD

/SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO, SHARE-UPD=YES
/SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA, SHARE-UPD=YES
/SET-FILE-LINK DDWORKR1,ADAYyyyy.WORK, SHARE-UPD=YES

/SET-FILE-LINK DDTEMPR1, ADAyyyyy.TEMP
/SET-FILE-LINK DDSORTR1,ADAYyyyy.SORT
/SET-FILE-LINK DDEBAND, CMP.AUS
/SET-FILE-LINK DDISN, LOD.ISN

/SET-FILE-LINK DDOLD, LOD.OLD

/START-PROGRAM *M (ADA.MOD, ADARUN) , PR-MO=ANY
ADARUN PROG=ADALOD, DB=yyyyy, IDTNAME=ADABAS5B
ADALOD UPDATE FILE=1,DDISN, SAVEDREC

ADALOD TEMPSIZE=100,SORTSIZE=50

ADALOD DELISN=100 199,230,301 399

/LOGOFF SYS-OUTPUT=DEL

ADALOD

361

362

Adabas Utilities Manual, Volume 1

In ISP Format:

/ .ADALOD LOGON

/OPTION MSG=FH,DUMP=YES

/REMARK *

/REMARK * A D A L. O D MASS UPDATE
/REMARK *

/SYSFILE SYSLST=L.LOD.UPDA

/FILE
/FILE
/FILE
/FILE
/FILE
/FILE
/FILE
/FILE
/FILE
/EXEC

ADA.MOD, LINK=DDLIB

ADAYyYyyy.ASSO , LINK=DDASSOR1, SHARUPD=YES
ADAYyyyy.DATA , LINK=DDDATAR1, SHARUPD=YES
ADAYYyYyy.WORK , LINK=DDWORKR1, SHARUPD=YES
ADAYyyyy.TEMP , LINK=DDTEMPR1
ADAYYyYyY.SORT , LINK=DDSORTR1

CMP . AUS, LINK=DDEBAND

LOD.ISN,LINK=DDISN ,SPACE=(48,48)
LOD.OLD, LINK=DDOLD , SPACE=(480,48)
(ADARUN, ADA . MOD)

ADARUN PROG=ADALOD, DB=yyyyy, IDTNAME=ADABASS5B
ADALOD UPDATE FILE=1,DDISN, SAVEDREC

ADALOD TEMPSIZE=100, SORTSIZE=50

ADALOD DELISN=100 199,230,301 399

/LOGOFF NOSPOOL

ADALOD

0S/3900r z/OS

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARN disk

Work DDWORKR1 disk Requir_ed only if Adabas nucleusis
not active

Temp area DDTEMPR1 disk

Temp overflow DDFILEA disk/tape Stores descriptor values if the temp

(optional) dataset is too small

Sort area DDSORTR1 disk

Sort area DDSORTR2 disk When using large files, split the sort
area across two volumes 1

Recovery log (RLOG) DDRLOGR1 disk Required for the recovery log option

Compressed data DDEBAND disk/tape Oylt.put of ADACMP or ADAULD
utility

ISNs to be deleted DDISN disk/tape ISNsto be deleted 2

Deleted records DDOLD disk/tape Deleted records, if any 3

ADARUN parameters DDCARD reader Operations Manual
ADALOD parameters DDKARTE reader

ADARUN messages DDPRINT printer ADALOD report, see also Messages
and Codes

ADALOD messages DDDRUCK printer Messages and Codes

Notes:

1. Performance can be improved when sorting large files if the sort dataset either occupies two
volumes, or if two sort datasets are specified. When using two volumes, each volume must be
exactly half the size specified by the SORTS ZE parameter. If two datasets are used, both must
be on the same device type (SORTDEV parameter).

2. Four bytes per ISN, RECFM=VB, BLKS ZE as in sequential file description, LRECL maximum
equals BLKSIZE - 4.

3. RECFM=VB, BLKSZE as in sequential file description, LRECL maximum equals
BLKSZE - 4.

363

Adabas Utilities Manual, Volume 1

ADALOD JCL Examples (0S/390 or z/OS)

Refer also to ADALODE, ADALODA, ADALODM, and ADALODV in the MV SJOBS dataset
for additional ADALOD examples on loading an ADAM file or the Adabas demo files.

Load File
Refer to ADALOD in the MV SJOBS dataset for this example.

/ /ADALOD JOB

//*

//* ADALOD : LOAD FILE

//*

//LOD EXEC PGM=ADARUN

//STEPLIB DD DISP=SHR, DSN=ADABAS.Vvrs .LOAD <=== ADABAS LOAD
//*

//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1l <=== ASSO
//DDDATAR1 DD DISP=SHR, DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR, DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDTEMPR1 DD DISP=0OLD, DSN=EXAMPLE.DByyyyy.TEMPR1 <=== TEMP
//DDSORTR1 DD DISP=0OLD, DSN=EXAMPLE.DByyyyy.SORTR1 <=== SORT

/ /DDEBAND DD DISP=0OLD, DSN=EXAMPLE.DByyyyy.DDEBAND <=== INPUT
/ /DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X

/ /DDCARD DD *
ADARUN PROG=ADALOD, MODE=MULTI, SVC=xxx, DEVICE=dddd, DBID=yyyyy
/*

/ /DDKARTE DD *

ADALOD LOAD FILE=1

ADALOD NAME='TESTFILE-1’

ADALOD MAXISN=10000,DSSIZE=10
ADALOD TEMPSIZE=100,SORTSIZE=100
/*

//

364

Update

ADALOD

Refer to ADALODMU in the MV SJOBS dataset for this example.

//ADALODMU JOB

//*

//* ADALOD : MASS UPDATE

//*

//LOD EXEC PGM=ADARUN

//STEPLIB DD DISP=SHR, DSN=ADABAS.Vvrs .LOAD <=== ADABAS LOAD
//*

//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1l <=== ASSO
//DDDATAR1 DD DISP=SHR, DSN=EXAMPLE.DByyyyy.DATARL <= DATA
//DDTEMPR1 DD DISP=0OLD, DSN=EXAMPLE.DByyyyy.TEMPR1 <=== TEMP
//DDSORTR1 DD DISP=0OLD, DSN=EXAMPLE.DByyyyy.SORTR1 <=== SORT

/ /DDEBAND DD DISP=0OLD, DSN=EXAMPLE.DByyyyy.DDEBAND <=== INPUT
//DDISN DD DISP=0OLD, DSN=EXAMPLE.DByyyyy.DDISN <=== ISNS TO DEL
/ /DDOLD DD DISP= (NEW, CATLG) , DSN=EXAMPLE .DByyyyy.DDOLD, <=== DEL REC
// SPACE= (TRK, (100,20) ,RLSE) ,UNIT=DISK, VOL=SER=VOLvVVvVV

/ /DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
/ /DDCARD DD *

ADARUN PROG=ADALOD, MODE=MULTI, SVC=xxx, DEVICE=dddd, DBID=yyyyy

/*

/ /DDKARTE DD *

ADALOD UPDATE FILE=1,LWP=400K, SAVEDREC
ADALOD TEMPSIZE=100,SORTSIZE=100
ADALOD DELISN=100-199,230,301-399

/*

//

365

Adabas Utilities Manual, Volume 1

VM/ESA or zZ/VM

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data Storage DDATARN disk

Work DDWORKR1 disk

Temp area DDTEMPR1 disk

Temp overflow DDFILEA disk/tape Stores descriptor values if

(optional) temp dataset is too small.

Sort area DDSORTR1 disk With large files, split sort

Sort area DDSORTR? disk area across two volumes 1

Recovery log (RLOG) DRLOGR1 disk Required for the recovery
log option

Compressed data DDEBAND disk/tape Output of ADACMP or
ADAULD utility

ISNs to be deleted DDISN disk/tape ISNs to be deleted 2

Deleted records DDOLD disk/tape Deleted records, if any 3

ADARUN parameters DDCARD disk/terminal/reader Operations Manual
ADALOD parameters DDKARTE disk/terminal/reader

ADARUN messages DDPRINT disk/terminal/printer ADALOD report, see also
Messages and Codes

ADALOD messages DDDRUCK disk/terminal/printer Messages and Codes

Notes:

1. Performance can be improved when sorting large files if the sort dataset either occupies two
volumes, or if two sort datasets are specified. Both datasets must be on the same device type
(SORTDEV parameter), and each must be exactly half the size specified by the SORTSZE
parameter.

2. Four bytes per ISN, RECFM=VB, BLKS ZE as in sequential file description, LRECL maximum
equals BLKSIZE - 4.

3. RECFM=VB, BLKSZE asin sequential file description, LRECL maximum equals
BLKSZE - 4.

366

ADALOD JCL Examples (VM/ESA or zZ/VM)

Load File

DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
ADARUN

DDASSOR1, DSN=ADABASVvV.
DDDATAR1, DSN=ADABASVvV .
DDWORKR1 , DSN=ADABASVvV .
DDTEMPR1, DSN=ADABASVvV .
DDSORTR1, DSN=ADABASVvV.

ASSO, VOL=ASSOV1
DATA,VOL=DATAV1
WORK, VOL=WORKV1
TEMP, VOL=TEMPV1
SORT, VOL=SORTV1

DDEBAND, DSN=FILE0O01.LODD001, MODE=A
DDPRINT, DSN=ADALOD .DDPRINT,6 MODE=A

DUMP, DUMMY

DDDRUCK, DSN=ADALOD . DDDRUCK, MODE=A
DDCARD, DSN=RUNLOD . CONTROL, MODE=A
DDKARTE, DSN=FILE0O01.LODC001, MODE=A

Contents of RUNLOD CONTROL Al:

ADARUN PROG=ADALOD, DEVICE=dddd, DB=yyyyy

Contents of FILEO15 LODCO001 A1:

ADALOD LOAD FILE=1

ADALOD
ADALOD
ADALOD

NAME='TESTFILE-1'

MAXISN=50000,DSSIZE=10
TEMPSIZE=100,SORTSIZE=50

ADALOD

367

Update

368

Adabas Utilities Manual, Volume 1

DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
DATADEF
ADARUN

DDASSOR1, DSN=ADABASVvV .
DDDATAR1, DSN=ADABASVvV .
DDWORKR1, DSN=ADABASVvV .
DDTEMPR1, DSN=ADABASVvV .
DDSORTR1, DSN=ADABASVvV .

ASSO, VOL=ASSOV1
DATA, VOL=DATAV1
WORK, VOL=WORKV1
TEMP, VOL=TEMPV1
SORT, VOL=SORTV1

DDEBAND, DSN=ADALOD .LODD015, MODE=A
DDISN, DSN=ADALOD.ISN, MODE=A

DDOLD, DSN=ADABASVVv.OLDISN, MODE=A
DDPRINT, DSN=ADALOD .DDPRINT, MODE=A

DUMP, DUMMY

DDDRUCK, DSN=ADALOD . DDDRUCK, MODE=A
DDCARD, DSN=RUNLOD . CONTROL, MODE=A
DDKARTE, DSN=UPDATE . CONTROL, MODE=A

Contents of RUNLOD CONTROL Al:

ADARUN PROG=ADALOD, DEVICE=dddd, DB=yyyyy

Contents of UPDATE CONTROL A1:

ADALOD UPDATE FILE=1,DDISN, SAVEDREC

ADALOD
ADALOD

TEMPSIZE=100, SORTSIZE=50
DELISN=100-199,230,301-399

ADALOD

VSE/ESA
Dataset Symbolic Stor- Logical More Information
age Unit
Associator ASSORn disk 1
Data Storage DATARNn disk 1
Work WORKR1 disk 1 Required for inactive nucleus
Compressed data EBAND tape SYS010
disk 1
Recovery log (RLOG) RLOGR1 disk Required for the recovery log
option
Temp area TEMPR1 disk 1
Temp overflow FILEA tape SYS012 Stores descriptor values if the
(optional) disk 1 temp dataset is too small.
Sort area SORTR1 disk With large files, split sort area
across two volumes 2
ISNs to be deleted ISN tape SYS016 ISNsto be deleted
disk 1
Deleted records OoLD tape SYS014 Deleted ISNs
disk 1
ADALOD messages — printer SYS009 ADALOD report, see also
Messages and Codes
ADARUN messages — printer SYSLST Messages and Codes
ADARUN parameters — reader SYSRDR
CARD tape SY S000
CARD disk 1
ADALOD parameters — reader SYSIPT

369

Adabas Utilities Manual, Volume 1

Notes:

Any programmer logical unit may be used.

Performance can be improved when sorting large files if the sort dataset occupies two volumes.
When using two volumes, each volume must be exactly half the size specified by the SORTS ZE
parameter. If two datasets are used, both must be on the same device type (SORTDEV
parameter).

ADALOD JCS Examples (VSE/ESA)
See appendix B for a description of the VSE/ESA procedures (PROCs).

Load File
Refer to member ADALOD.X for this example.

* $$ JOB JNM=ADALOD, CLASS=A,DISP=D

* $$ LST CLASS=A,DISP=D

// JOB ADALOD

* SAMPLE FILE LOAD

// EXEC PROC=ADAVVLIB

// EXEC PROC=ADAVVFIL

// ASSGN SYSTEN, TAPE

// PAUSE MOUNT LOAD INPUT FILE ON TAPE cuu
// TLBL EBAND, 'DEMO.FILE’

// MTC REW,SYS010

// EXEC ADARUN, SIZE=ADARUN

ADARUN PROG=ADALOD, MODE=MULTI, SVC=xxx, DEVICE=dddd, DBID=yyyyy
/*

ADALOD LOAD FILE=1

ADALOD NAME='TESTFILE-1’

ADALOD MAXISN=10000,DSSIZE=10

ADALOD TEMPSIZE=100,SORTSIZE=100

/*

/&

* $$ EOJ

370

Update

ADALOD

Refer to member ADALODMU.X for this example.

* $$ JOB JNM=ADALODMU, CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D

!/

!/

JOB ADALODMU

MASS UPDATE
EXEC PROC=ADAVVLIB
EXEC PROC=ADAVVFIL
ASSGN SYS010,DISK,VOL=DISKO1l, SHR
ASSGN SYS014,DISK,VOL=DISKO02,SHR
ASSGN SYS016,DISK,VOL=DISKO03, SHR
DLBL EBAND, 'FILE.INPUT'’,,SD
EXTENT SYS010,DISK01,1,0,sssss,nnnnn
DLBL OLD, 'FILE.OLD’,,SD
EXTENT SYS014,DISK02,1,0,sssss,nnnnn
DLBL ISN,’'FILE.ISN’,,SD
EXTENT SYS016,DISK03,1,0,sssss,nnnnn
EXEC ADARUN, SIZE=ADARUN

ADARUN PROG=ADALOD, MODE=MULTI, SVC=xxx, DEVICE=dddd, DBID=yyyyy

/*

ADALOD UPDATE FILE=1,LWP=400K, SAVEDREC
ADALOD TEMPSIZE=100, SORTSIZE=100
ADALOD DELISN=100-199,230,301-399

/*

/&

* $S EOJ

371

372

ADAMER : ADAM ESTIMATION

Functional Overview

The ADAMER tility produces statistics that indicate the number of Data Storage accesses
required to find and read a record when using an ADAM descriptor. This information is used
to determine

e whether usage of the ADAM option would reduce the number of accesses required to retrieve
arecord using an ADAM descriptor as opposed to the standard Adabas accessing method,;

e the amount of Data Storage space required to produce an optimum distribution of records based
on the randomization of the ADAM descriptor.

The input datafor ADAMER is adataset containing the compressed records of afile produced
by the ADACMP or ADAULD utility.

The field to be used as the ADAM descriptor is specified with the ADAMDE parameter. A
multiple value field or a field contained within a periodic group may not be used. The ISN
assigned to the record may be used instead of a descriptor as the basis for randomization
(ADAMDE=ISN parameter).

The ADAM descriptor must contain a different value in each record, since the file cannot be
successfully loaded with the ADAM option of the ADALOD utility if duplicate values are
present for the ADAM descriptor. The ADAMER utility requires a descriptor field defined as
unique (UQ), but does not check for unique values; checking for unique descriptor valuesis done
by the ADALOD utility when loading the file as an ADAM file.

The BITRANGE parameter may be used to specify that a given number of bits are to be
truncated from each ADAM descriptor value before the value is used as input to the
randomization algorithm. This permits records containing ADAM descriptor values beginning
with the same value (for example, 40643210, 40643220, 40643344) to be loaded into the same
physical block in Data Storage. This technique can be used to optimize sequentia reading of
the file when using the ADAM descriptor to control the read sequence, or to remove
insignificant information such as a check digit.

373

Adabas Utilities Manual, Volume 1

Estimate ADAM Access Reguirements

ADAMER ADAMDE={ descriptor | ISN }
MAXISN=maximum-number-of-records
[BITRANGE={ minimum | 0 } {, maximum | 18 }{, increment | 2 }]
[DATADEV={ device-type | ADARUN-device }]
[DATAPFAC=padding-factor]
[DATASIZE=minimum, maximum [, increment]]
[NOUSERABEND]
[NUMREC={ number-of-records | all-records }]

Essential Parameters
ADAMDE : ADAM Key

Specifies the descriptor to be used as the ADAM key. If ISN is specified, ADAMER uses the
ISN of each input record as input for the randomization algorithm.

The ADAM descriptor must be found in the field definition table (FDT) and be defined as a
unique descriptor (UQ). It cannot be a sub-, super-, hyper-, collation, or phonetic descriptor. The
descriptor aso cannot specify the NU option, cannot be an MU field or afield within a periodic
group, and cannot be a variable-length field.

MAXISN : Highest ISN to Be Allocated for the File
The total number of records expected to be contained in the file.

MAXISN should include the number of records to be originally loaded plus the number of
records that are likely to be added to the file.

374

ADAMER

Optional Parameters
BITRANGE : Bit Truncation for ADAM Key

The minimum, maximum, and incremental number of bits to be truncated from each ADAM
descriptor value before the value is used as input to the ADAM randomization agorithm. Bits
are always truncated from the rightmost portion of the compressed value.

A maximum of 20 different bit truncations is permitted for each ADAMER execution.

Example:
BITRANGE=0,4,2

—results in the truncation of 0 bits, 2 bits, and 4 bits for each Data Storage size for which
statistics are provided.

If this parameter is omitted, a default BITRANGE equal to 0,18,2 is used.

DATADEV : Data Storage Device Type

The device type to be used for Data Storage. If DATADEYV is not specified, the device type
specified by the ADARUN DEVICE parameter is the default.

DATAPFAC : Data Storage Padding Factor

The Data Storage padding factor to be used for the file. The number specified represents the
percent of each Data Storage physical block that is not to be used during initial file loading. A
value in the range 1-90 may be specified.

If this parameter is omitted, a padding factor of 10 percent is used during ADAMER execution.

375

Adabas Utilities Manual, Volume 1

DATASIZE : Data Storage Sizesfor ADAM Estimates

The Data Storage sizes, in cylinders, for which ADAM gatistics are to be provided. A maximum
of four Data Storage sizes can be calculated per ADAM execution. The minimum and
maximum values may be specified without the increment. ADAMER cal cul ates two increments
to produce a report based on al four values.

Example:
DATASIZE=100,175,25

—results in statistics for Data Storage sizes of 100, 125, 150, and 175 cylinders.

If DATASIZE is omitted, ADAMER provides statistics for four Data Storage sizes as follows:

Size 1. Thefirst 100 input records are read and the Data Storage size requirement is
based on the ADAM descriptor values present in these records and the value
specified for MAXISN. The resulting Data Storage size is used as Data Storage
Size 1.

Size 2. Data Storage Size 1 x 1.33.
Size3: Data Storage Size 2 x 1.33.
Size 4. Data Storage Size 3 x 1.33.

NOUSERABEND : Termination without ABEND

376

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message “utility TERMINATED DUE TO ERROR CONDITION” isdisplayed and
the utility terminates with condition code 20.

ADAMER

NUMREC : Maximum Number of Recordsto Read

The maximum number of records to be read from the input file. If NUMREC is not specified,
all records are read.

Examples

Example 1:

ADAMER ADAMDE=CC, ADAMER DATADEV=3350,DATASIZE=50,110,20, ADAMER
DATAPFAC=10,MAXISN=225000,BITRANGE=2,6,1

The ADAM descriptor is CC. Model 3350 devicetypeisto be used for Data Storage. Statistics
for Data Storage sizes of 50, 70, 90, and 110 cylinders are to be provided. Data Storage padding
factor of 10 percent isto be used. The planned number of records for thefileis 225,000. For each
Data Storage size, statistics are to be provided for bit truncations of 2, 3, 4, 5, and 6 bits.

Example 2:
ADAMER ADAMDE=CD,DATADEV=3380,DATAPFAC=5MAXISN=80000

The ADAM descriptor is CD. Model 3380 device type is to be used for Data Storage. Data
Storage padding factor of 5 percent isto be used. The planned number of records for thefileis
80,000. Default values are to be used for all other parameters.

377

Adabas Utilities Manual, Volume 1

ADAMER Output Report Description

378

The following entries appear on the report produced by ADAMER:

Field Explanation
LOADISNS Number of records contained in the input dataset.
MAXISN Total file records (see the MAXISN parameter description).

DATA DEVICE Data Storage device type (see the DATADEV parameter description).
DATAPFAC Data Storage padding factor (see DATAPFAC parameter description).

The following fields appear under “AVERAGE NUMBER OF EXCPs’:

Field Explanation

Data Storage SIZE See the DATASIZE parameter description. The number of cylindersis
rounded up to the nearest integer.

BIT-PARM See the BITRANGE parameter description.

FOR LOADISNS The average number of 1/Os required to find and read a record when
the ADAM descriptor is used. This result assumes that the number of
records in the file is equal to the number of records contained in the
input dataset.

DISK USAGE The percentage of Data Storage space occupied after initial loading of
the file. This result assumes that the number of records to be loaded is
equal to the number of records contained in the input dataset.

FOR MAXISN The average number of 1/Os required to find and read a record when
using the ADAM descriptor. This result assumes that the number of
records in the file is equal to the value specified with the MAXISN
parameter.

DISK USAGE The percentage of Data Storage space occupied after initial loading of
the file. This result assumes that the number of records to be loaded is
equal to the number of records specified with the MAXISN parameter.

Using the information contained on the ADAMER report, the user can determine

the optimum balance between access and Data Storage space requirements; and

the optimum number of bits that should be truncated from each ADAM descriptor value so that
records containing similar beginning values are loaded into the same physical block. Thisis
necessary only if optimization of sequential reading is desired.

ADAMER

JCL/JCS Requirements and Examples

This section describes the job control information required to run ADAMER with BS2000,
0S/390 or zZ/OS, VM/ESA or zZ/VM, and V SE/ESA systems and shows exampl es of each of the

job streams.
BS2000
Dataset Link Name Storage More Information
Input data DDEBAND tape/disk Output of ADACMP or
ADAULD utility

ADARUN parameters SYSDTA/ DDCARD Operations Manual
ADAMER parameters SYSDTA/ DDKARTE

ADARUN messages SYSOUT/ DDPRINT Messages and Codes
ADAMER messages/report SYSLST/ DDDRUCK Messages and Codes

ADAMER JCL Example (BS2000)

In SDF Format:

/ .ADALOD LOGON

/MODIFY-TEST-OPTIONS DUMP=YES

/REMARK *

/REMARK * A D A M E R ALL FUNCTIONS

/REMARK *

/ASS-SYSLST L.MER

/ASS-SYSDTA *SYSCMD

/SET-FILE-LINK DDLIB,ADAvrs.MOD

/SET-FILE-LINK DDASSOR1,ADAYyyyy.ASSO, SHARE-UPD=YES
/SET-FILE-LINK DDEBAND, CMP.AUS

/START-PROGRAM *M (ADA.MOD, ADARUN) , PR-MO=ANY
ADARUN PROG=ADAMER, DB=yyyyy, IDTNAME=ADABASS5B
ADAMER ADAMDE=AA,DATASIZE=5200,BITRANGE=8,10,1
ADAMER MAXISN=10000

/LOGOFF SYS-OUTPUT=DEL

379

Adabas Utilities Manual, Volume 1

In ISP Format:

/ .ADAMER LOGON

/OPTION MSG=FH,DUMP=YES

/REMARK *

/REMARK * A D A M E R ALL FUNCTIONS
/REMARK *

/SYSFILE SYSLST=L.MER

/FILE ADA.MOD,LINK=DDLIB

/FILE CMP.AUS, LINK=DDEBAND

/EXEC (ADARUN, ADA.MOD)

ADARUN PROG=ADAMER, DB=yyyyy, IDTNAME=ADABAS5E
ADAMER ADAMDE=AA, DATASIZE=5200,BITRANGE=8,10,1

ADAMER MAXISN=10000
/LOGOFF NOSPOOL

0S/3900r zZ/OS

Dataset DD Name Storage More Information

Input data DDEBAND tape/disk Output of ADACMP or
ADAULD utility

ADARUN parameters DDCARD reader Operations Manual

ADAMER parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes

ADAMER messages/report DDDRUCK printer Messages and Codes

ADAMER JCL Example (OS/390 or zZ/OS)

Refer to ADAMER in the MV SJOBS dataset for this example.

380

/ /ADAMER JOB

//*

//* ADAMER:

//* ADAM ESTIMATION
//*

//MER EXEC PGM=ADARUN

//STEPLIB DD
//*

/ /DDEBAND DD
/ /DDDRUCK DD
//DDPRINT DD
//SYSUDUMP DD
/ /DDCARD DD

DISP=SHR, DSN=ADABAS.Vvrs.LOAD <===

DISP=OLD, DSN=EXAMPLE .DByyyyy . COMPR1 <===
SYSOUT=X
SYSOUT=X
SYSOUT=X

*

ADAMER

ADABAS LOAD

COMPRESS DATA

ADARUN PROG=ADAMER, MODE=MULTI, SVC=xxx, DEVICE=dddd, DBID=yyyyy

/*
/ /DDKARTE DD

*

ADAMER MAXISN=1000,ADAMDE=AA,BITRANGE=0,2,4
ADAMER DATADEV=eeee, DATAPFAC=10,DATASIZE=100,175,25

/*
//

VM/ESA or zZ/VM

Dataset DD Name Storage More Information

Input data DDEBAND tape/disk Output of ADACMP
or ADAULD utility

ADARUN parameters DDCARD disk/termina/reader ~ Operations Manual

ADAMER parameters DDKARTE disk/terminal/reader

ADARUN messages DDPRINT disk/termina/printer Messages and Codes

ADAMER messages/report DDDRUCK disk/terminal/printer

Messages and Codes

381

Adabas Utilities Manual, Volume 1

ADAMER JCL Example (VM/ESA or zZ/VM)

DATADEF DDEBAND, DSN=ADABASVv.BAND, MODE=A
DATADEF DDPRINT, DSN=ADAMER.DDPRINT, MODE=A

DATADEF DUMP, DUMMY

DATADEF DDDRUCK, DSN=ADAMER .DDDRUCK, MODE=A
DATADEF DDCARD, DSN=RUNMER.CONTROL, MODE=A
DATADEF DDKARTE, DSN=ADAMER.CONTROL, MODE=A

ADARUN

Contents of RUNMER CONTROL Al:

ADARUN PROG=ADAMER, DEVICE=dddd, DB=yyyyy

Contents of ADAMER CONTROL A1:

ADAMER ADAMDE=AA,DATASIZE=5200,BITRANGE=8,10,1 ADAMER MAXISN=10000

VSE/ESA
File Sym. Name Storage Logical Unit More Information
Input data EBAND tape SYS010 Output of ADACMP
disk * or ADAULD utility
ADARUN parameters — reader SYSRDR Operations Manual
CARD tape SY S000
CARD disk *
ADAMER parameters - reader SYSIPT
ADARUN messages - printer SYSLST Messages and Codes
ADAMER messages/report — printer SYS009 Messages and Codes

382

* Any programmer logical unit may be used.

ADAMER

ADAMER JCS Example (VSE/ESA)

See appendix B for a description of the VSE/ESA procedures (PROCs). Refer to member
ADAMER.X for this example.

* $$ JOB JNM=ADAMER, CLASS=A,DISP=D

* $$ LST CLASS=A,DISP=D

// JOB ADAMER

// OPTION LOG, PARTDUMP

* ADAM ESTIMATION

// EXEC PROC=ADAVVLIB

// EXEC PROC=ADAVVFIL

// DLBL EBAND, ' EXAMPLE.DByyyyy.COMPR1’,0,SD

// EXTENT SYS004

// ASSGN SYS004,DISK,VOL=DISKO1l, SHR

// EXEC ADARUN, SIZE=ADARUN

ADARUN PROG=ADAMER, MODE=MULTI, SVC=xxx, DEVICE=dddd, DBID=yyyyy
/*

ADAMER MAXISN=1000,ADAMDE=AA,BITRANGE=0,2,4

ADAMER DATADEV=eeee, DATAPFAC=10,DATASIZE=100,175,25
/*

/&

* $$ EOJ

383

384

APPENDIX A : ADABAS SEQUENTIAL FILES

Sequential File Table

This appendix summarizes the sequential files used by the Adabas utilities. Explanations of the
table heading and contents are in the text following the table.

Utility File Name VSE Out In BLKSIZE Concatenation
Tape SYS by device
ADACDC DD/SIIN 10 X Yes
ADACMP DD/AUSBA 12 X Yes
DD/EBAND 10 X
DD/FEHL 14 X
ADALOD DD/EBAND 10 Yes
DD/FILEA 12 X Yes
DD/ISN 16 X Yes
DD/OLD 14 X
ADAMER DD/EBAND 10 X
ADAORD DD/FILEA 10 X X Yes
ADAPLP DD/PLOG 14 X Yes
ADAREP DD/SAVE 10 X Yes
DD/PLOG 1 X Yes
ADARES DD/BACK 20 X Yes
DD/SIAUSL 21
DD/SIAUS2 22
DD/SIIN 20 X Yes
ADASAV DD/DEL1 31 X Yes
DD/DEL2 32 X Yes
DD/DEL3 33 X Yes
DD/DEL4 34 X Yes

385

Adabas Utilities Manual, Volume 1

Utility File Name VSE Out In BLKSIZE Concatenation
Tape SYS by device

DD/DEL5 35 X Yes
DD/DEL6 36 X Yes
DD/DEL7 37 X Yes
DD/DEL8 38 X Yes
DD/DUAL1 21 X

DD/DUAL2 22 X

DD/DUAL3 23 X

DD/DUAL4 24 X

DD/DUALS 25 X

DD/DUALG6 26 X

DD/DUAL7 27 X

DD/DUALS8 28 X

DD/FULL 30 X Yes
DD/PLOG 10 X Yes
DD/REST1 1 X Yes
DD/REST2 12 X

DD/REST3 13 X

DD/REST4 14 X

DD/REST5 15 X

DD/REST6 16 X

DD/REST7 17 X

DD/REST8 18 X

DD/SAVE1L 1 X

DD/SAVE2 12 X

DD/SAVE3 13 X

DD/SAVE4 14 X

386

Utility

ADASEL

File Name

DD/SAVE5S
DD/SAVE6
DD/SAVE7
DD/SAVES
DD/EXPA1
DD/EXPA2
DD/EXPA3
DD/EXPA4
DD/EXPAS
DD/EXPA6
DD/EXPA7
DD/EXPAS8
DD/EXPA9
DD/EXPA10
DD/EXPA11
DD/EXPA12
DD/EXPA13
DD/EXPA14
DD/EXPA15
DD/EXPA16
DD/EXPA17
DD/EXPA18
DD/EXPA19
DD/EXPA20
DD/SIIN

VSE
Tape SYS

15
16
17
18
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
10

Out

X X

Adabas Sequential Files

In

BLKSIZE Concatenation

by device

Yes

387

Adabas Utilities Manual, Volume 1

Utility File Name VSE Out In BLKSIZE Concatenation
Tape SYS by device
ADAULD DD/OUT1 10 X Yes
DD/OUT2 1 X Yes
DD/ISN 12 X Yes
DD/SAVE 13 X Yes
DD/PLOG 14 X Yes
DD/FULL 30 X Yes
DD/DEL1-8 31-38 X Yes
ADAVAL DD/FEHL 10 X Yes

Files that are both output and input are first written and then read by the indicated program.
BS2000, VM/ESA or z/VM, OS/390 or z/OS, and OS-compatible files have “DD...” names
(DDSIIN, DDFEHL, etc.); VSE/ESA file names are without “DD”.

388

Adabas Sequential Files

Operating System Dependencies

The following sections describe characteristics of file and device definition by operating
system.

BS2000 Systems

Note:
This discussion uses SPF format. In ISP format:

SPF Format ISP Format

BUFF-LEN BLKS ZE defined by BLKSZE=(STD,16)
RECFFORM RECFM

REC-SZE RECSZE

SET-FILE-LINK FILE

The LINK name by which afileis referenced is determined as follows:
¢ The characters DD are prefixed to the file name to form the LINK name.

. If files for which the column “Concatenation” contains “Yes’ are on tape, they may be
concatenated as follows: the first file is read using the indicated LINK name; at the first
end-of-file, O is appended to the LINK name; and, if thereisa/SET-FILE-LINK (in ISP format
/FILE) statement for that LINK name, reading continues.

e Each subsequent end-of-file adds 1 to the LINK name, and as long as there is a
/SET-FILE-LINK (in ISP format /FILE) statement for that LINK name, reading continues
through a maximum of 99. For LINK names longer than six characters, the excess characters
will be overlaid with the file number increment (e.g.,, DDEBAND becomes DDEBANOL).

e BS2000 does not support the backward reading of multivolume tape files; therefore, all volumes
of the ADARES DDBACK file must be specified in the reverse order in which they were written
on /SET-FILE-LINK (in ISP format /FILE) statements using the LINK names DDBACK,
DDBACKO01, DDBACKO02, and so on.

389

390

Adabas Utilities Manual, Volume 1

The BUFF-LEN of a sequential file is determined as follows:

The BUFFLEN is obtained from the /SET-FILE-LINK statement or the dataset’s catalog
entry, if present.

If the BUFFLEN cannot be obtained from the /SET-FILE-LINK statement and/or catalog, the
value of the ADARUN QBLKSIZE parameter is used, if specified.

Otherwise, the BUFF-LEN depends on the device type as follows:

Tape 32760
Disk: 32768 (BUFF-LEN=(STD,16))

The REC-SIZE and REC-FORM should be as follows:

Tape: REC-SIZE = BUFF-LEN — 4; REC-FORM =V,
Disk: REC-SIZE = BUFFLEN — 20; RECFORM =V,
Input: Obtained from the /SET-FILE-LINK statement or the dataset’s catalog entry.

Note:
Do not specify REC-FORM, REC-SZE, or BUFF—LEN for input datasets unless the TAPE
dataset contains no REC-FORM, REC-SZE, or BUFF-LEN values in HDR2.

The SPACE parameter for primary and secondary allocations must specify a multiple of three
(3) times the number of PAM blocks specified in the BUFFLEN parameter. Otherwise, 1/0
errors will occur. For the default /CREATE-FILE ...PUB(SPACE(48,48)) and
[SET-FILE-LINK BUFF-LEN=STD(16) (in ISP format, BLKSIZE=(STD,16),
SPACE=(48,48)) is the smallest valid value.

The portions of the DDDRUCK and DDPRINT datasets already written to disk can be accessed
during either aregular nucleus or utility session for reading. Thisincludes the following BS2000
read accesses.

SHOW-FILE
@READ dataset
/COPY—FILE (in ISP format, /COPY)

Adabas Sequential Files

Concatenation of Sequential Input Filesfor BS2000

For using more than one dataset as input medium to an ADABAS utility, some operating systems
(such as OS/390) provide a concatenation feature.

For BS2000 this feature is simulated by adding /SET-FILE-LINK (in ISP format, /FILE)
statements with modified LINK names created from the origina and a two-digit increment
(ranging from 01 to 99):

/SET-FILE-LINK DDTEST, firstfile
/SET-FILE-LINK DDTESTO1,secondfile
/SET-FILE-LINK DDTESTO02,thirdfile

/SET-FILE-LINK DDTEST99, lastfile

In ISP format:

/FILE firstfile ,LINK=DDTEST
/FILE secondfile, LINK=DDTESTO1
/FILE thirdfile ,LINK=DDTESTO02

/FILE lastfile ,LINK=DDTEST99

For those original LINK namesthat are 7 or 8 characters long, the incremental number occupies
the 7th and 8th position. For example:

/SET-FILE-LINK DDEBAND, firstfile
/SET-FILE-LINK DDEBANDO1, lastfile

In ISP format:

/FILE firstfile , LINK=DDEBAND
/FILE secondfile, LINK=DDEBANO1

When processing input files that have the concatenation option at end-of-file of oneinput file,
a check is made to determine whether a /SET-FILE-LINK (in ISP format, /FILE) statement
exists for the next dataset. If none exists, the sequential GET call returns EOF; otherwise, the
dataset currently open is closed, and an open is tried for the next file.

Files concatenated in thisway must have the same file characteristics (block size, record format
and record size).

391

Adabas Utilities Manual, Volume 1

This concatenation feature applies also to files that are processed backwards. The order of the
LINK names is the reverse of the creation order. For example, ADARES with DDBACK:

/SET-FILE-LINK DDBACK, lastfile
/SET-FILE-LINK DDBACKO1l,filebeforelast

/...
/SET-FILE-LINK DDBACKnn, firstfile

In ISP format:

/FILE lastfile ,LINK=DDBACK
/FILE filebeforelast, LINK=DDBACKO1l

Y
/FILE firstfile ,LINK=DDBACKnn

Note that this feature can also be used to process a multivolume file backwards, if each volume
is specified with a separate /SET—FILE-LINK (in ISP format, /FILE) statement.

The following list is of LINK names/utilities with the concatenation option:

DDDELN ADASAV
(where n = 1-8)
DDEBAND ADACMP
ADALOD
ADAMER
DDFULL ADASAV
DDISN ADALOD
DDPLOG ADAPLP
ADASAV
DDBACK ADARES
DDSIIN ADARES
ADASEL

DDREST1 ADASAV
(LINK names used are DDREST1, DDRESTO01, DDREST02, and so on.)

392

Adabas Sequential Files

Example for Use of the Concatenation Feature with ADARES

During the last nucleus session, three protection log files were produced with ADARES
PLCOPY named F1, F2, F3.

When backing out the session to a specific point, use the following /SET-FILE-LINK (in ISP
format, /FILE) statements for the ADARES BACKOUT function:
/SET-FILE-LINK DDBACK, F3

/SET-FILE-LINK DDBACKO01,F2
/SET-FILE-LINK DDBACKO02,F1

In ISP format:

/FILE F3,LINK=DDBACK
/FILE F2,LINK=DDBACKO1l
/FILE F1,LINK=DDBACKO02

To regenerate the database from the protection log that was produced during the session, use the
following /SET-FILE-LINK (in ISP format, /FILE) statements for the ADARES
REGENERATE function:

/SET-FILE-LINK DDSIIN,F1
/SET-FILE-LINK DDSIINO1,F2
/SET-FILE-LINK DDSIINO2,F3

In ISP format:

/FILE F1,LINK=DDSIIN
/FILE F2,LINK=DDSIINO1l
/FILE F3,LINK=DDSIINO2

Control Statement Read Procedurein Version 11.2 (OSD 2.0)

With BS2000 version 11.2 (OSD 2.0), the SY SIPT system file is no longer available. Beginning
with version 5.3.3, ADABAS can read all control statements from the SYSDTA system file.

When running on BS2000 Versions 10.0 or 11.0, the SYSIPT assignment can still be used;

however, Software AG recommends adapting all ADABAS utility and Entire Net-Work job

control to indicate the SY SDTA system file before migrating to BS2000 version 11.2 (OSD 2.0).
ADARUN TAPEREL : Tape Release Option

The ADARUN parameter TAPEREL is required to perform the tape handling control for
utilities that access files on tape. See the ADABAS Operations Manual for more information.

393

Adabas Utilities Manual, Volume 1

0S/390 or MVS/ESA Systems

394

The DDNAME is formed by prefixing the characters DD to the file name.

To allow utilities to access dataset information after closing, the DD statement for sequential
datasets used in utilities should not contain FREE=CL OSE.

The BLKSIZE of a sequentia file is determined as follows:

If the column, “BLKSIZE by device” specifies Yesfor afile, the default BLKSIZE depends on
the device type as follows:

Tape: 32760
3330 disk: 13030
3340 disk: 8368
3350 disk: 19069
3375 disk: 17600
3380 disk: 23476
3390 disk: 27998

If the column “BLKSIZE by device” does not specify Yes for afile, the file's BLKSIZE is
obtained from the DD statement or dataset labdl, if present. It must be present for any input file.

If the column “BLKSIZE by device” does not specify Yes for afile and the BLKSIZE cannot
be obtained from the DD statement or dataset label, the value of the ADARUN QBLKSIZE
parameter is used, if specified.

Except for ADACMP EBAND, the RECFM and LRECL of al sequentia files are VB and
BLKSIZE-4, respectively. For ADACMP EBAND, RECFM and LRECL must be available
from the DD statement and/or dataset |abel.

If the DCB BUFNO parameter is not provided on the DD statement, the operating system default
will be used.

Adabas Sequential Files

VM/ESA Systems

The DATADEF name is formed by prefixing the characters DD to the file name.

The BLKSIZE of a sequentia file is determined as follows:

. If the column, “BLKSIZE by device” specifies Yes for afile, the BLKSIZE depends on the
device type as follows:

Tape: 32760
FBA disk: 32760
3330 disk: 13030
3340 disk: 8368
3350 disk: 19069
3375 disk: 17600
3380 disk: 23476
3390 disk: 27998

. If the column “BLKSIZE by device” does not specify Yes for afile, the file's BLKSIZE is
obtained from the DD statement or dataset labdl, if present. It must be present for any input file.

. If the column “BLKSIZE by device” does not specify Yes for afile and the BLKSIZE cannot
be obtained from the DD statement or dataset label, the value of the ADARUN QBLKSIZE
parameter is used, if specified.

For all sequentia files except ADACMP EBAND, the RECFM is VB and LRECL is
(BLKSIZE — 4). For ADACMP EBAND, RECFM and LRECL must be available from the
DATADEF statement and/or dataset label.

395

Adabas Utilities Manual, Volume 1

VSE/ESA Systems

The following items determine how afileis referenced by the utilities running under VSE/ESA:
e Thefile nameis used as the filename on the DLBL or TLBL statement.
. If files for which the column “Concatenation” contains Yes are on tape, they may be
concatenated as follows:
— Thefileisfirst read using the indicated file name.

— Atthefirst end-of-file, 01 is appended to the file name and, if thereisa TLBL statement
for that filename, reading continues.

— At each subsequent end-of-file, 1 is added to the file name and reading continues as long
asthereisa TLBL statement for that filename, up through a maximum of 99.

e Since VSE does not support reading multivolume tape files backward, each volume of the
ADARES BACK file must be specified in reverse order from the way it was written on TLBL
statements using the filenames BACK, BACKO01, BACKO02, and so on.

Any programmer logical unit may be used for sequential files on disk. The VSE Tape SYS
number must be used for sequential files on tape; any or all of these numbers may be changed
using procedures defined in the ADABAS Installation Manual.

The BLKSIZE of a sequentia file is determined as follows:

. If the column “BLKSIZE by Device” specifies Yes for a file, the BLKSIZE depends on the
device type as follows:

Tape: 32760
FBA disk: 32760
3330 disk: 13030
3340 disk: 8368
3350 disk: 19069
3375 disk: 17600
3380 disk: 23476
3390 disk: 27998

. If the column “BLKSIZE by Device’ does not specify Yesfor afile, the value of the ADARUN
QBLKSIZE parameter is used, if specified.

396

Adabas Sequential Files

For ADACMP EBAND, this BLKSIZE is checked and may then be changed to an actual
BLKSIZE, depending on the RECFM and LRECL parameters as specified on ADACMP control
cards, as follows:

If RECFM= ... then theactual BLKSIZE= ...

F LRECL.

FB BLKSIZE/LRECL*LRECL, where the remainder of the division is
discarded before the multiplication.

U LRECL, which must not be greater than BLKSIZE.

\% LRECL+4, which must not be greater than BLKSIZE.

VB BLKSIZE, which must not be less than LRECL +4.

The RECFORM of all sequential files except ADACMP EBAND is VARBLK. For ADACMP
EBAND, it is provided by the RECFM parameter of a control statement.

To distinguish whether VSE message 4140D refers to the first or a subsequent volume of a
multivolume tape file, message ADAI31 is written to the operator whenever a tape file is
opened, but not at end-of-volume.

Concatenation of Sequential Input Filesfor VSE/ESA

In those cases whereit is desired to use more than one dataset asinput medium for an ADABAS
utility, a concatenation feature is provided by some operating systems (OS/390 or z/OS, for
example).

For VSE, this feature is smulated by adding FILE statements with modified LINK names
created from the original and a two-digit increment (ranging from 01 to 99):

// DLBL TEST ,’'firstfile’
// EXTENT ...
// DLBL TESTO1,'secondfile’
// EXTENT ...

// DLBL TEST99,'lastfile’
// EXTENT ...

When processing input files that have the concatenation option at end-of-file (EOF) of one input
file, acheck is made to determine whether a FILE statement exists for the next dataset. If it does
not exist the Sequential Get call returns EOF; otherwise, the dataset currently open is closed and
an open is tried for the next file.

397

Adabas Utilities Manual, Volume 1

Files concatenated in thisway must have the same file characteristics (block size, record format,

and record size).

This concatenation feature applies also to files that are processed backwards. The order of the
LINK names is the reverse of the creation order; for example, ADARES with BACK:

// DLBL BACK
// EXTENT ...

'lastfile’

// DLBL BACKO1,'filebeforelast’

// EXTENT ...

// DLBL BACKnn,'firstfile’

// EXTENT ...

Note that this feature could also be used to process a multivolume file backwards, if each volume
is specified with a separate FILE statement.

The following are the LINK names/utilities with the concatenation option:

DELN
(where n=1-8)

EBAND

FULL

PLOG

BACK
SIIN

REST1

398

ADASAV

ADACMP
ADALOD
ADAMER

ADASAV
ADALOD

ADAPLP
ADASAV

ADARES

ADARES
ADASEL

ADASAV
(LINK names used are REST1, REST101, REST102, and so on.)

Adabas Sequential Files

Example for Use of the Concatenation Feature with ADARES

During the last nucleus session, three protection log files were produced with ADARES
PLCOPY named F1, F2, F3.

When deciding to back out the session to a specific point, the following FILE statements should
be used for the ADARES BACKOUT function:

// DLBL BACK ,'F3’
// EXTENT ...
// DLBL BACKO01,'F2’
// EXTENT ...
// DLBL BACKO02,'F1’
// EXTENT ...

To regenerate the database from the protection log that was produced during the session, the
following FILE statements should be used for the ADARES REGENERATE function:

// DLBL SIIN ,'F1’
// EXTENT ...
// DLBL SIINO1,'F2’
// EXTENT ...
// DLBL SIINO2,'F3’
// EXTENT ...

399

400

APPENDIX B :
PROCEDURES FOR VSE/ESA EXAMPLES

The VSE/ESA examples assume that the procedures for defining Adabas libraries (ADAVVLIB)
and Adabas files (ADAVVFIL) have been cataloged into an accessible procedure library.

For information about catal oging these procedures, refer to the section Catalog Procedur es for
Defining Libraries and the Database in the VSE/ESA chapter of the Adabas Installation
Manual.

Information about cataloging procedures for use with the Delta Save Facility are documented
in the Adabas Delta Save Facility Manual.

AdabasLibraries (ADAVVLIB)

// PROC

R R R R R EEEE SR SRS EEEEEREEEEEREEREEREEEREEREEREEREEEEEESEEEEESEESEESESEESEES IS
* LIBRARY DEFINITIONS AND CHAINING FOR ADABAS *
R R R R R EEEE SR SRS EEEEEREEREEEREEREEREEEREEREEREEREEEEEESEEEEESEESEESESEESEES IS
// SETPARM VERS=vrs <— CURRENT VERSION

// SETPARM ADALIB=SAGLIB <- SAG PRODUCT LIBRARY

// SETPARM ADASUB=ADA&VERS <- ADABAS SUBLIBRARY

// DLBL SAGLIB, 'SAG.PRODUCT.LIBRARY’

// EXTENT ,vVvvvvv

// LIBDEF *,SEARCH=&ADALIB. .&ADASUB, TEMP

// LIBDEF PHASE, CATALOG=&ADALIB. .&ADASUB, TEMP
// ASSGN SYS009, PRINTER

—where

vrs is the Adabas version, revision, and system maintenance (SM) level
VWV isthe programmer logical unit assigned

401

Adabas Utilities Manual, Volume 1

Adabas Files (ADAVVFIL)

// ASSGN SYS031,dddd,VOL=ADA0O01, SHR

// ASSGN SYS032,dddd, VOL=ADA002, SHR

// ASSGN SYS033,dddd, VOL=ADA003, SHR

// ASSGN SYS034,dddd,VOL=ADA004, SHR

// DLBL ASSOR1, 'EXAMPLE.ADAyyyyy.ASSOR1’,99/365,DA
// EXTENT SYS031,ADA001,,,15,1500

// DLBL DATAR1, 'EXAMPLE.ADAyyyyy.DATAR1’,99/365,DA
// EXTENT SYS032,ADA002,,,15,3000

// DLBL WORKR1, 'EXAMPLE.ADAyyyyy.WORKR1’,99/365,DA
// EXTENT SYS033,ADA003,,,15,600

// DLBL PLOGR1, 'EXAMPLE.ADAyyyyy.PLOGR1’,99/365,DA
// EXTENT SYS034,ADA004,,,15,600

// DLBL PLOGR2, 'EXAMPLE.ADAyyyyy.PLOGR2’,99/365,DA
// EXTENT SYS034,ADA004,,,615,600

// DLBL CLOGR1, 'EXAMPLE.ADAyyyyy.CLOGR1’,99/365,DA
// EXTENT SYS034,ADA004,,,1215,750

// DLBL CLOGR2, 'EXAMPLE.ADAyyyyy.CLOGR2’,99/365,DA
// EXTENT SYS034,ADA004,,,1965,750

// DLBL TEMPR1, 'EXAMPLE.ADAyyyyy.TEMPR1’,99/365,DA
// EXTENT SYS032,ADA002,,,3015,1500

// DLBL SORTR1, 'EXAMPLE.ADAyyyyy.SORTR1’,99/365,DA
// EXTENT SYS033,ADA003,,,615,375

// EXTENT SYS034,ADA004,,,2715,375

// DLBL RLOGR1, 'EXAMPLE.ADAyyyyy.RLOGR1’,99/365,DA
// EXTENT SYS033,ADA003,,,990,150

402

APPENDIX C: SUPPLIED UES ENCODINGS

The tablesin this appendix list the encodings available with universal encoding support (UES)
when executing Adabas utilities or issuing Adabas commands. Encodings represent single-byte
character sets (Latin—1 or not) or double-/multiple-character sets. If encodings

e have a character set in common with other encodings so that conversion between them is
accomplished without loss of data, they are “interoperable”.

e arenot interoperable, they are “coexistent” with other encodings.

Columns used in the following tables are described as follows:

Key
Cs
CP

Size

ESID

Fill
Sub

Entire Conversion Services (ECS) key number in decimal and hexadecimal
character set as identified by IBM
code page usually identical to the “key”. It is not identical when

M
S

CP does not fit into the ECS key number range 1-4095; or
the encoding is constructed from two or more code pages.
encoding uses all allocated graphical character space
maximum for given ESID

subset

encoding scheme identifier with the following entries:

1100
1301
2100
2200
2300
4100
4105

EBCDIC fixed 1

EBCDIC mixed DBCS modal

IBM PC data fixed 1

IBM PC data DBCS only

IBM PC data mixed DBCS nonmodal
ISO-8 fixed 1

ISO-8 fixed 1 graphic characters in the range x’80'— x'9F' reserved for
control codes

the hexadecimal value representing the fill character used in the encoding.

the hexadecimal value representing the substitution character used in the
encoding.

403

Adabas Utilities Manual, Volume 1

Interoperable Encodings

Single-Byte Character Sets(Latin—1)

Key
Dec

37

273
277
278
280
284

285
297
500

819
871
923
924
1140
1141
1142
1143
1144
1145
1146
1147
1148

404

Hex
025

m
115
116
118
11C

11D
129
1F4

333
367
39B
39C
474
475
476
477
478
479
47A
478
47C

CS

697

697
697
697
697
697

697
697
697

697
697

* %
* %
* %
* %
* %
* %
* %
* %
* %
* %

* %

CP

37

273
277
278
280
284

285
297
500

819
871
923
924
1140
1141
1142
1143
1144
1145
1146
1147
1148

FIM/S
Size
F 190

F 190
F 190
F 190
F 190
F 190

F 190
F 190
F 190

F 190
F 190
F 190
F 190
F 190
F 190
F 190
F 190
F 190
F 190
F 190
F 190
F 190

ESID

1100

1100
1100
1100
1100
1100

1100
1100
1100

4100
1100
4100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100

Fill

40

40
40
40
40
40

40
40
40

20
40
20
40
40
40
40
40
40
40
40
40
40

Sub

3F

3F
3F
3F
3F
3F

3F
3F
3F

3F

3F
3F
3F
3F
3F
3F
3F
3F
3F
3F

Description

CECP: USA, Canada (ESA*), Nether-
lands, Portugal, Brazil, Australia, New
Zedland

CECP: Austria, Germany, de_deu
CECP: Denmark, Norway

CECP: Finland, Sweden

CECEP: Italy, it_ita

CECP: Spain, Latin America (Spanish),
€s_esp

CECP: United Kingdom, en_gbr
CECP: France, fr_fra

CECP: Belgium, Canada (AS/400%),
Switzerland, international Latin—1

SO 8859-1: Latin alphabet, Latin—1
CECP: Iceland, is_ISL

SO 8859-15 with euro sign

IBM EBCDIC with same char. set as923.
IBM EBCDIC 37 with euro sign
IBM EBCDIC 273 with euro sign
IBM EBCDIC 277 with euro sign
IBM EBCDIC 278 with euro sign
IBM EBCDIC 280 with euro sign
IBM EBCDIC 284 with euro sign
IBM EBCDIC 285 with euro sign
IBM EBCDIC 297 with euro sign
IBM EBCDIC 285 with euro sign

Key
Dec
1149
*3946

Hex
47D
F6A

CS CP F/M/s ESID Fill

* %

697

1149
850

Size
F 190
S 190

1100
2100

40
20

Supplied UES Encodings

Sub Description

3F
7F

IBM EBCDIC 871 with euro sign

PC data—190: Latin aphabet, Latin—1

(CCSID=4946)

* This code page is not yet available but may be at a later time.

** This information is not yet available.

Single-Byte Character Sets(Non-Latin—1)

Key
Dec
420
424
813
870
875
912
914
915
916
918
919
920

921

922
1006
1025
1026
1112
1122

Hex
1A4
1A8
32D
366
36B
390
392
393
394
396
397
398

399
39A
3EE
401
402
458
462

CS CP F/M/s ESID Fill

235
941
925
959
925
959

1150
941
1160

1152

1305
1307
1160
1150
1152
1307
1307

420
424
813
870
875
912
914
915
916
918
919
920

921

922
1006
1025
1026
1112
1122

Size
M 181
M 152
M 183
F 190
M 184
F 190
F 190
F 190
M 152
F 190
F190
F 190

F 190
F 190
F 190
F 190
F 190
F 190
F 190

1100
1100
4100
1100
1100
4100
4100
4100
4100
1100
4100
4100

4100
4100
4100
1100
1100
1100
1100

40
40
20
40
40
20
20
20
20
40
20
20

20
20
20
40
40
40
40

Sub Description

3F
3F
1A
3F

FEEEEES EEEEERE 4

IBM, Arabic (all presentation shapes)

IBM, Hebrew, iw_isr

SO 8859-7: Greek/Latin, el_GRC
IBM, Latin-2

IBM, Greek, el_GRC

ISO 8859-2: Latin-2

SO 88594

ISO 8859-5: Cyrillic, 8-bit

ISO 8859-8: Hebrew, iw_ISR
IBM, Urdu

ISO 8859-10

ISO 88599 Latinb5 (ECMA-128,

Turkey TS-5881), tr_TUR

IBM, Bdltic, 8-hit

IBM, Estonia, 8-bit

IBM, Urdu

IBM, Cyrillic multilingual

IBM, Turkey Latin-5, tr TUR

IBM, Baltic, multilingual (EBCDIC)
IBM, Estonia (EBCDIC)

405

Adabas Utilities Manual, Volume 1

Double- and Multiple-Byte Character Sets

Key CS CP F/M/s ESID Fill Sub Description

Dec Hex Size

290 122 1172 290 M 162 1100 40 3F Japanese Katakana host extended
SBCS, ja JPN

83 344 1174 836 M99 1100 40 3F Simplified Chinese host extended
SBCS (EBCDIC), zh CHN

1027 403 1172 1027 M 162 1100 40 3F IBM, Japanese Latin host extended
SBCS, ja_JPN

1041 411 1172 1041 S162 2100 20 1A IBM, Japanese PC data extended
SBCS, ja_JPN

IBM, traditional Chinese PC data
extended SBCS, zh TWN

1115 45B 1174 1115 M99 2100 20 1A IBM, simplified Chinese PC data
single-byte (IBM GB) including 5
SAA SB characters, zh CHN

1380 564 937 1380 M 9355 2200 A1Al FEFE IBM, simplified Chinese DBCS PC
(IBM GB) including 1880 UDC and
31 IBM-selected, zh_CHN

1381 565 1174 1115 M 9454 2300 20 1A IBM, simplified Chinese PC data
937 1380 AlAl1 FEFE mixed (IBM GB) including 1880
UDC, 31 IBM-selected and 5 SAA

SB characters, zh CHN

3026 BD2 1172 290 S9306 1301 40 3F IBM CCSID 5026, Japanese Kataka-
370 300 4040 FEFE naKanji host mixed including 1880
UDC, extended SBCS, ja_ JPN

3035 BDB 1172 1027 S9306 1301 40 3F IBM CCSID 5035, Japanese
370 300 4040 FEFE Latin-Kanji host mixed including
1880 UDC, extended SBCS, ja_JPN

3396 D44 370 300 S9144 1200 4040 FEFE IBM, CCSID 4396, Japanese host
double-byte including 1880 UDC,
ja_JPN

1043 413 1175 1043 M 97 2100 20

S

406

Supplied UES Encodings

Key CS CP F/MJ/s ESID Fill Sub Description
Dec Hex Size
3709 E7D 1175 3709 S97 1100 40 3F IBM CCSID 28709: traditional
Chinese host extended SBCS
(EBCDIC), zh_ TWN
4091 FFB F 0020 001A UTF-8: with user/compatibility
63456 area; without surrogates
Coexistent Encodings
Single-Byte Character Sets
Key CS CP F/M/s ESID Fill Sub Description
Dec Hex Size
3 3 103 367 F94 5100 20 1A US-ASCII
6 6 F190 4100 20 1A ISO 8859-3, Latin-3, Afrikaans, Cata-
lan, Dutch, English, German, Italian,
Maltese, Spanish, Turkish
9 9 M 145 4100 20 1A ISO 88596, Arabic
437 1B5 697 437 F222 2100 20 1A Microsoft MSDOS US, en_USA
850 350 1106 950 F222 2100 20 1A Microsoft multilingual code page 850,
Latin-1
858 350 1106 950 F222 2100 20 1A Microsoft multilingual code page 850,
Latin-1, euro-ready
1250 4E2 1400 1250 M 217 4105 20 1A Microsoft, Windows ANSI, Latin-2,
euro-ready
1251 4E3 1401 1251 M 220 4105 20 1A Microsoft, Windows ANSI, Cyrillic,
euro-ready
1252 4E4 1402 1252 M 215 4105 20 1A Microsoft, Windows ANSI, Latin-1,
euro-ready
1253 4E5 1403 1253 M 206 4105 20 1A Microsoft, Windows ANSI, Greek,
euro-ready
1254 4E6 1404 1254 M 215 4105 20 1A Microsoft, Windows ANSI, Turkey,

euro-ready

407

Adabas Utilities Manual, Volume 1

Key
Dec Hex
1255 4E7

1256 4ES8
1257 4E9
2084 824

2087 827
2258 8D2
4092 FFC
4093 FFD
4094 FFE
4095 FFF

Double- and Multiple-Byte Character Sets

Key
Dec Hex

18 12

36 24

300 12C

301 12D

408

CsS CP

1405 1255

1406 1256

1407 1257

775
1258

FIM/S
Size
M 194
M 214
M 203

M 222

M 222
M 222

ESID

4105

4105

4105

3100

3100
4105
4100
1100

7200 0020 O001A

Fill

20

20

20

20

20
20
20
20
40

CS CP F/M/S ESID
Size

103 367 S13102 4403
1061 952
1121 896
1062 953

5404
1001 300 M 11634 1200

370 301 M 9144

2200

5255 5 5 % &5

Fill

20
8140

20

Description

Microsoft, Windows ANSI, Hebrew,

euro-ready
Microsoft, Windows ANSI, Arabic,
euro-ready
Microsoft, Windows ANSI, Baltic rim,
euro-ready

RELCOM, koi8—, RFC-1489,
Russian internet character set

Baltic

Microsoft, Windows ANSI, Vietnam
Software AG, used for ECS internally
Software AG, old TS default, ASCII
Software AG, old TS default, EBCDIC
Unicode

Sub Description

1A IBM CCSID 1350, EUC-IR,
ja_ JPN composed of US-ASCII,
JS-X-0208, HW Katakana, and
JS-X-0212-90

1A 1S0-2022-JP, US-ASCII,
J'S-Roman, JIS-0208-1983,
JS_C_6226-1978

4040 FEFE IBM Japanese Latin host

double-byte including 4370
UDC, ja_JPN

8140 FCFC IBM Japanese PC double-byte

including 1880 UDC, SIS,
ja_JPN

Key
Dec
835

837

927

932

935

936

937

942

948

949

950

Hex

345

39F

3A4

3A7

3A8

3A9

3AE

3B4

3B5

3B6

CS

935

937

935

11223
70

1174
937

1185
937

1175
935

1172
370

1175
935

1278
1050

103
935

CP

835

837

927

897
301

836
837

1185

937

903
937

1041
301

948

949

950

FIM/S
Size
M 20263

M 9355

M 20263

M 9301

M 9454

M 9449

S 20360

M 9306

M 20360

M 10197

M 20357

ESID

1200

1200

2200

2300

1301

2300

1301

2300

2300

2300

2300

Fill

4040

4040

8140

20
8140

40
4040

20
1A1A

40
4040

20
8140

20
8140

20
Al1Al

20
A140

Sub

FEFE

FEFE

FCFC

3F
FEFE

3F
FEFE

FCFC

FCFC

AFFE

Supplied UES Encodings

Description

IBM traditiona Chinese host
double-byte including 6204 UDC
(EBCDIC) zh_TWN

Simplified Chinese host
double-byte including 1880 UDC
(EBCDIC), zh_CHN

IBM traditional Chinese PC data
double-byte including 6204
UDC, zh TWN

Microsoft, J'S Roman,
JS-X-208, half-width Katakana,
ja_JPN

Simplified Chinese host mixed
including 1880 UDC, extended
SBCS (EBCDIC), zh_CHN

Microsoft, GB Roman,
GB 2312-80, zh_ CHN

IBM traditional Chinese host
mixed including 6204 UDC,
extended SBCS (EBCDIC),
zh TWN

IBM, Japanese PC data mixed
including 1880 UDC, extended
SBCS, ja JPN

IBM, traditional Chinese PC data
mixed including 6204 UDC,
extended SBCS, zh TWN

IBM, Korean IBM KS code —
PC data mixed including 1880
UDC, ko KOR

Microsoft, Big Five, zh TWN

409

Adabas Utilities Manual, Volume 1

Key CS CP F/M/S ESID Fill Sub Description

Dec Hex Size

951 3B7 1050 951 M 10103 2200 A1Al1 AFFE IBM, Korean IBM KS code —

3001 10001 3001 20 1A
8140

410

PC data double-byte including
1880 UDC, ko_KOR

MAC Japanese, J S-Roman,
JS-X-208, HW Katakana,
ja PN

INDEX

A

ADAACK utility, 11-18
ACCHECK function, 12
BS2000 JCL, 14
functional overview, 11
VSE/ESA ICS, 18
Z/OS or OS/390 JCL, 16
z/VM or VM/ESA JCL, 17
Adabas control block
start logging, using utility, 192
stop logging, using utility, 192
Adabas Delta Save Facility, display status, using
utility, 187
Adabas file, create, using utility, 60
Adabas files, sequential, list by utility, 385
Adabas Review
deactivate, using utility, 195
hub 1D, set/modify, using utility, 195
local mode, switch to using utility, 195
Adabas Statistics Facility, using ADADBS RE-
FRESHSTATS with, 201
ADACDC utility, 19-41
examples, 33
extract file, 20
functional overview, 19
input data, 22
JCL requirements and examples, 34
BS2000, 34
VSE/ESA, 40
Z/OS or 0S/390, 36
zZ/VM or VM/ESA, 38
operating system factors, 27
BS2000, 28
VSE/ESA, 28
Z/OS or 0S/390, 27
operation, 19
output data, 22

parameters, 25
phases of operation, 19
primary output file, 20
checkpoints, 21
running, 25
syntax, 25
transaction file, 23
user exit, 29
cals, 31
installing, 29
interface description, 29
using to update or add records, 33
ADACMP utility, 43-82
COMPRESS function, 60
examples, 101
output, 54
compressed data records, 54
rejected data records, 54
storage requirements report, 55
overview, 43
DECOMPRESS function, 103
examples, 108
multiclient files, 107
output, 57
rejected data records, 58
overview, 44
input requirements
data structure, 45
multiple-value field count, 45
periodic group count, 47
variable-length field size, 50
JCL requirements and examples, 108
BS2000, 110
0S/390 or Z/OS, 113
VM/ESA, 116
VSE/ESA, 117
processing, 52
data compression, 52

411

Adabas Utilities Manual, Volume 1

data verification, 52
restart considerations, 59
user exit 6, 59
user exits

collation, 109

compression, 108

ADACNV utility, 121-135
CONVERT function, 123
functiona overview, 121
JCL requirements and examples, 129

BS2000, 129

0S/390 or Z/OS, 132

VM/ESA or zZ/VM, 133

VSE/ESA, 134
REVERT function, 126

ADADBS utility, 137-167
ADD dataset function, 139
ALLOCATE function, 141
CHANGE function, 143
checking syntax, 138
CVOLSER function, 145
DEALLOCATE function, 146
DECREASE function, 148
DELCP function, 149
DELETE function, 151
DSREUSE function, 153
ENCODEF function, 155
functiona overview, 137
INCREASE function, 156

procedure
BS2000, 163
general, 157
0S/390 or z/OS, 158
VM/ESA or zZ/VM, 161
VSE/ESA, 159
ISNREUSE function, 164
JCL requirements and examples

BS2000, 214

0S/390 or zZ/OS, 215

VM/ESA or zZ/VM, 216

VSE/ESA, 217
MODFCB function, 165

412

NEWFIELD function, 168
ONLINVERT function, 171
ONLREORFASSO function, 173
ONLREORFDATA function, 175
ONLREORFILE function, 178
OPERCOM function, 181
PRIORITY function, 198
RECOVER function, 199
REFRESH function, 200
REFRESHSTATS function, 201
RELEASE function, 203
RENAME function, 205
RENUMBER function, 206
RESETDIB function, 207
TRANSACTIONS function, 209
UNCOUPLE function, 212
ADADCK utility, 219-226
DSCHECK function, 220
JCL requirements and examples
BS2000, 222
0S/390 or Z/OS, 223
VM/ESA or zZ/VM, 225
VSE/ESA, 226
ADADEF utility, 227-250
DEFINE function, 228
functional overview, 227-250
checkpoint file, 227-250
database components, 227-250
JCL requirements and examples
BS2000, 242
0S/390 or Z/OS, 245
VM/ESA or zZ/VM, 247
VSE/ESA, 249
MODIFY function, 237
NEWWORK function, 240
ADAEND operator command, using utility, 183
ADAFRM utility, 251-263
all functions, 252, 253
format new RABNSs, 251
formatting database components, 251
functional overview, 251
JCL requirements and examples

Index

BS2000, 257 user exits, collation, 213, 303
0S/390 or z/OS, 259 ADALOD utility, 313-371
VM/ESA or z/VM, 261 JCL requirements and examples
VSE/ESA, 262 BS2000, 359
reset dataset blocks/cylinders to zeros, 251 0S/390 or z/OS, 363
ADAICK utility, 265-290 VM/ESAor z/VM, 366
ACCHECK function, 267 VSE/ESA, 369
ASSOPRINT function, 268 LOAD function, 314
BATCH function, 269 Associator updating by, 337
DATAPRINT function, 270 examples, 332-371
DSCHECK function, 271 input data for, 334
DUMP function, 272 space allocation for file, 334
examples, 285 space/statistics report, 356

FCBPRINT funct!on, 273 storage requirements and use, 354
FDTI.DRlNT funcyon, 274 Temp dataset requirements, 355
functiona overview, 265-290 UPDATE function, 341
GCBPRINT function, 275 Associator updating with, 352

:ﬁ?ECK tfunct2ic7)g, 216 descriptor information generation, 352
unction, examples, 348

JCL requirements and examples input requirements, 351

BS2000, 286 .
0S/390 or Z/OS, 288 mass updates to expanded files, 353

VM/ESA or Z/VM, 289 space allocation, 352
VSE/ESA, 290 ' user exits, collation, 358

NIPRINT function, 278 ADAM

NOBATCH function, 279 Ioaq files wqh,_ usi ng_ut|l|ty, .318

NODUMP function. 280 retrieval statistics, using utility, 373-383

NOINT function, 281 ADAMER uitility, 373-383

PPTPRINT function, 282 examples, 377

UIPRINT function, 284 JCL requirements and examples

user exits, collation, 286 BS2000, 379

ADAINV utility, 201312 0S/390 or Z/OS, 380

COUPLE function, 292 VM/ESA or z/VM, 381

examples, 302 VSE/ESA, 382

functional overview, 291 output report, 378

INVERT function, 298 syntax, 374

JCL requirements and examples Address converter
BS2000, 304 allocate an extent, using utility, 141
0S/390 or z/OS, 307 check against Data Storage, using utility, 12
VM/ESA or z/VM, 309 check index againgt, using utility, 276
VSE/ESA, 311 deallocate an extent, using utility, 146

space alocation during execution, 302 space alocation, using utility, 335, 352

413

Adabas Utilities Manual, Volume 1

validate for specific files, using utility,
265-290
ALOCKF operator command, using utility, 183
Alphanumeric fields, no conversion option
(NV), 76
Associator
add dataset to, using utility, 139
check physical structure of, using utility, 265
coupling lists, creating, 296
decrease size of dataset, using utility, 148
format, using utility, 252
increase size of dataset, using utility, 156
print/dump block(s), using utility, 268
reset blocks/cylinders to zeros, using utility,
253
updating
using utility, 352
using utlity, 337
ATM, loading system files for, 316
Attached buffers, command to display usage,
189

C

CANCEL operator command, using utility, 184
Checkpoaint file

defing, using utility, 228

define for a new database, using utility, 227
Checkpoints, delete, using utility, 149
Collation descriptor, define

using ADACMP, 83

using ADAINV, 298
Command log

close/switch dual, using utility, 191

format, using utility, 253

start logging, using utility, 192

stop logging, using utility, 192
Command queue, command to display usage,

189

Command queue element

display, using utility, 188

414

display posted, using utility, 186
Convert database
to higher version, 123
to lower version, 126
Coparameters, specifying, 8
CT, ADARUN parameter, command to override
setting, 186
CT operator command, using utility, 186

D

Data compression
ADACMP tility, 43, 52
fields with NC option, 79
Data decompression
ADACMP utility, 44, 103
fields with NC option, 79
Data definition
COLDE statement
of ADACMP COMPRESS, 83
of ADAINV INVERT, 299
field options
DE — descriptor, 70
FI — fixed storage, 71
LA —long aphanumeric, 72
MU — multiple-value, 73
NC — null not counted, 79
compressing/decompressing, 79
NN — not null, 81
NU — null value suppression, 75
NV —no conversion, 76
overview, 70
PE — periodic group, 76
UQ — unique descriptor, 77
X1 — exclude PE instance from UQ, 77
FIELD statement, of ADAINV INVERT, 299
FNDEF statement, of ADACMP COMPRESS,
66
HYPDE statement
of ADACMP COMPRESS, 85
of ADAINV INVERT, 299
PHONDE statement

of ADACMP COMPRESS, 89
of ADAINV INVERT, 299
SUBDE statement
of ADACMP COMPRESS, 90
of ADAINV INVERT, 299
SUBFN statement, 93
SUPDE statement
of ADACMP COMPRESS, 94
of ADAINV INVERT, 299
SUPFN statement, 99
syntax, using ADACMP utility, 66
Data integrity block
display entries, using utility, 187
reset entries in, using utility, 207
Data Storage
add dataset to, using utility, 139
allocate an extent, using utility, 141
check for a specified file, using utility,
219-226
check the address converter against, using
utility, 12
deallocate an extent, using utility, 146
decrease size of dataset, using utility, 148
format, using utility, 252
increase size of dataset, using utility, 156
print/dump block(s), using utility, 270
print/dump record, using utility, 271
reset blocks/cylinders to zeros, using utility,
253
reuse blocks, using utility, 153
space alocation, using utility, 336
Database
change name assigned to, using utility, 205
component datasets, format, using utility,
251-263
defing, using utility, 228
define a new, using utility, 227-250
delete file from, using utility, 151
Datasets
adding/updating, using utility, 313-371
format, using utility, 251-263

Index

intermediate coupling storage, calculate using
utility, 295

DAUQ operator command, using utility, 186
DCQ operator command, using utility, 186
DDIB operator command, using utility, 187
DDSF operator command, using utility, 187
Descriptor

collation, 83

define, using ADAINV utility, 291-312

field option (DE), 70

hyperdescriptor, 85

phonetic, 89

release from descriptor status, using utility,

203

specify for file coupling, using utility, 292

subdescriptor, 90

superdescriptor, 94

unique, 77
DFILES operator command, using utility, 187
DFILUSE operator command, using utility, 187
DHQ operator command, using utility, 188
DHQA operator command, using utility, 188
Disk volume, print Adabas extents located on,

using utility, 145
DLOCKF operator command, using utility, 188
DNC operator command, using utility, 188
DNH operator command, using utility, 188
DNU operator command, using utility, 188
DONLSTAT operator command, using utility,
189

DPARM operator command, using utility, 189
DRES operator command, using utility, 189
DSTAT operator command, using utility, 190
DTH operator command, using utility, 190
Dump

suppress, using utility, 280

suspend suppression of, using utility, 272

terminate online status, using utility, 194
DUQ operator command, using utility, 190
DUQA operator command, using utility, 190
DUQE operator command, utility, 190

415

Adabas Utilities Manual, Volume 1

DUUQE operator command, using utility, 190

E

Encodings, change, using utility, 237
Expanded file chain, checking uniqueness of
descriptor within, 77
Expanded files
load anchor file, 320
loading, 337
mass updates to, 353

F

FEOFCL operator command, using utility, 191
FEOFPL operator command, using utility, 191
Field definition table

add afield to, using utility, 168

print/dump, using utility, 274
Fields

add, using utility, 168

change standard length of, using utility, 143

subfield, 93

superfield, 99
File control block, dump/print, using utility, 273
File coupling

lists

create using utility, 296
space for, calculate using utility, 297
temporary space for, calculate using utility,
295

uncouple, using utility, 212

using utility, 291-312
File encoding, modify, 155
File extents

allocate, using utility, 141

deallocate, using utility, 146

print on given disk volume, using utility, 145
Files

Adabas, create using utility, 60

416

Adabas sequential
BS2000
concatenate input, 391
control statement read procedure, 393
record formats, 389
tape release option, 393
determining names and blocks sizes, 385
list by utility, 385
0S/390 or z/OS, record formats, 394
VM/ESA or z/VM, record formats, 395
VSE/ESA
concatenation of input, 397
record formats, 396
allocate space for, 334
change file number of, using utility, 206
change name assigned to, using utility, 205
decompressing, multiclient, 107
delete, using utility, 151
display
locked, using utility, 188
total commands processed for select, using
utility, 187
user types for select, using utility, 187
load, using utility, 314
load with ADAM option, 318
lock
at all security levels, using utility, 191
for all non-utility use, using utility, 191
for all users except EXU/EXF, using utility,
192
in advance, using utility, 183
modify parameters of, using utility, 165
remove advance lock
on al files, 194
on specified file, 194
reset to empty status, using utility, 200
stop users of specified, using utility, 195
system, Checkpoint, define for a new data-
base, 227
types, 316
unlock specified
for utility use, using utility, 197

using utility, 197
Fixed storage (FI), use in ADACMP, 71
Format buffer
start logging, using utility, 192
stop logging, using utility, 192
Format pool, command to display usage, 189

G

General control block, print/dump, using utility,
275

H

HALT operator command, using utility, 191
Hold queue

command to display usage, 189

display count of 1SNs, using utility, 188
Hold queue element, display, using utility, 188
Hyperdescriptor, define

using ADACMP, 85

using ADAINV, 298

1/O activity
start logging, using utility, 192
stop logging, using utility, 193
Index
check against address converter, using utility,
276
space allocation
by ADAINV, 302
for coupling lists, using utility, 298
using utility, 334
validate for specific files, using utility,
265-290
Invert, start online process, using utility, 171
ISN buffer

Index

start logging, using utility, 192

stop logging, using utility, 192
ISNs

format for specifying, 349

set to resuse, using utility, 164

L

Lock, file in advance, command to set, 183
LOCKF operator command, using utility, 191
LOCKU operator command, using utility, 191
LOCKX operator command, using utility, 192
LOGGING, operator command, using utility,
192
LOGxx, operator command, using utility, 192
Long aphanumeric (LA), field option, 72

M

Multiclient files
decompressing, 107
loading, 340
owner |ID
assign a new, using utility, 324
specify length of, using utility, 325
Multiple-value fields, data definition option
(MU), 73

N

NOLOGGING, operator command, using utility,
192
NOLOGxx, operator command, using utility,
192
Normal index
allocate an extent, using utility, 141
deallocate an extent, using utility, 146
print/dump, using utility, 278
Nucleus, display current operating status, using
utility, 190

417

Adabas Utilities Manual, Volume 1

Null value
indicator, specified in record buffer, 80
not allowed (NN), field option, 81
not counted (NC), field option, 79
SQL support, 78
suppression (NU), field option, 75

O

Online invert, start, using utility, 171
Online process
display status of, using utility, 189
resume a suspended process, using utility, 193
stop cleanly, using utility, 193
suspend, using utility, 193
Online reorder
Associator, 173
Data Storage, 175
file, 178
ONLRESUME, operator command, using util-
ity, 193
ONLSTOR, operator command, using utility,
193
ONLSUSPEND, operator command, using util-
ity, 193
Operator commands, ADADBS OPERCOM
function, 181

P

Parallel participant table, print/dump, using util-
ity, 282
Parameters, positional values, specifying, 8
Periodic groups, data definition option (PE), 76
Phonetic descriptor, define
using ADACMP, 89
using ADAINV, 298
Printout
formatted
cancel suppression of, using utility, 277

418

suppress, using utility, 281
set width to 132 characters, using utility, 269
set width to 80 characters, using utility, 279
Procedures, for defining Adabas libraries, VSE/
ESA, 401
Protection log
close/switch dual, using utility, 191
format, using utility, 253

Q

Quiesce database, ADADBS function, 209

R

RALOCKF operator command, using utility,
194
RALOCKFA operator command, using utility,
194
RDUMPST operator command, using utility,
194
READONLY, operator command, using utility,
194
Read-only status, switch on/off, using utility,
184, 194
Record buffer
null value indicator value, 80
start logging, using utility, 192
stop logging, using utility, 193
Records, add/delete, using utility, 341
Recovery log, format, using utility, 253
Redo pool, command to display usage, 189
Reorder Associator, start online process, using
utility, 173
Reorder Data Storage, start online process, using
utility, 175
Reorder file, start online process, using utility,
178
Resources
display current usage, using utility, 189
statistics, command to display, 189

Resume normal processing, ADADBS function,
209

Revert database, to lower version, 126

REVIEW, operator command, using utility, 195

S

Search buffer
start logging, using utility, 192
stop logging, using utility, 193
Security pool, command to display usage, 189
Session
cancel immediately, using utility, 184
display current parameters, using utility, 189
reset statistical values for, using utility, 201
stop, using utility, 191
terminate normally, using utility, 183
Sort, format, using utility, 253
Space
estimation report (ADACMP), 55
for file coupling lists, calculate using utility,
297
recover, using utility, 199
temporary, for file coupling, calculate using
utility, 295
SQL, null representation support, 78
STOPF, operator command, using utility, 195
STOPI, operator command, using utility, 195
STOPU, operator command, using utility, 195
Storage, fixed (FI), 71
Subdescriptor, define
using ADACMP, 90
using ADAINV, 298
Subfield, define, using utility, 93
Subparameters, specifying, 8
Superdescriptor, define
using ADACMP, 94
using ADAINV, 298
Superfield, define, using utility, 99
Suspend normal processing, ADADBS function,
209

Index

SYNCC, operator command, using utility, 196

T

Table of 1SNs pool, command to display usage,
189
Table of sequential commands pool, command
to display usage, 189
Temp
ADALOD requirements for, 355
format, using utility, 253
space alocation, using utility, 336
Threads, display status, using utility, 190
Timeout control
interregion communication limit, command to
override setting, 186
non-activity limit
set for access-only users, using utility, 196
set for ET logic users, using utility, 196
set for exclusive control users, using utility,
196
TNAA, operator command, using utility, 196
TNAE, operator command, using utility, 196
TNAX, operator command, using utility, 196
Transaction, set time limit for ET logic users,
using utility, 196-197
Transaction ID (XID) pool, command to display
usage, 189
Transaction processing, suspend/resume, 209
TT, operator command, using utility, 196

U

Unique descriptor
define, using ADALOD, 331
exclude PE instance, 77
usein ADACMR 77
Unique descriptor pool, command to display
usage, 189
Universal encoding support (UES)
no conversion field option (NV), 76

419

Adabas Utilities Manual, Volume 1

table of encodings, 403-410
coexistent, 407
interoperable, 404
UNLOCKF, operator command, using utility,
197
UNLOCKU, operator command, using utility,
197
UNLOCKX, operator command, using utility,
197
Upper index
allocate an extent, using utility, 141
deallocate an extent, using utility, 146
print/dump, using utility, 284
User
change priority, using utility, 198
display count of, using utility, 188
ET logic, resynchronize al, using utility, 196
set non-activity time limit, using utility, 196
stop those timed out, using utility, 195
stop those using a specified file, using utility,
195
stop those with a specified job name, using
utility, 196
stop user with specified 1D, using utility, 196
User data
start logging, using utility, 192
stop logging, using utility, 193

User exits
6, ADACMP user processing, 59
ADACDU, 29

hyperdescriptor, 85
User queue, command to display usage, 189
User queue element
display, using utility, 186
display all, using utility, 190
display for specified user, using utility, 190
display up to 5, using operator command, 190
display utility, using utility, 190
remove stopped, using utility, 195
User queue file list pool, command to display
usage, 189
Utility control statement

420

parameter values, 6
default, 9
value, 7
value list, 8
value range, 8
rules, 6
syntax, 2
mutually exclusive parameters, 4
parameter list, 2
repeating parameters and values, 5
required and optional parameters, 3
subparameters, 3
Utility-only status, switch on/off, using utility,
197
UTIONLY, operator command, using utility, 197

V

Value buffer

start logging, using utility, 192

stop logging, using utility, 193
VSE/ESA, procedures for examples, 401

W

Wide-character fields, no conversion option
(NV), 76
Work
defing, for an existing database, using utility,
227
format, using utility, 253
reset blocks/cylinders to zeros, using utility,
253
Work file, define, using utility, 240
Work pool, command to display usage, 189

X

XID pool, command to display usage, 189

Notes

421

ADABAS Utilities Manual, Volume 1

422

Notes

423

ADABAS Utilities Manual, Volume 1

424

	Adabas Utilities Manual, Volume 1
	Table of Contents
	General Information
	ADAACK
	ADACDC
	ADACMP
	ADACNV
	ADADBS
	ADADCK
	ADADEF
	ADAFRM
	ADAICK
	ADAINV
	ADALOD
	ADAMER
	Appendices
	Adabas Sequential Files
	Procedures for VSE/ESA Examples
	Supplied UES Encodings

	Index

